Content-Length: 280618 | pFad | https://dlmf.nist.gov/./../././././28.4#ii

DLMF: §28.4 Fourier Series ‣ Mathieu Functions of Integer Order ‣ Chapter 28 Mathieu Functions and Hill’s Equation
About the Project
28 Mathieu Functions and Hill’s EquationMathieu Functions of Integer Order

§28.4 Fourier Series

Contents
  1. §28.4(i) Definitions
  2. §28.4(ii) Recurrence Relations
  3. §28.4(iii) Normalization
  4. §28.4(iv) Case q=0
  5. §28.4(v) Change of Sign of q
  6. §28.4(vi) Behavior for Small q
  7. §28.4(vii) Asymptotic Forms for Large m

§28.4(i) Definitions

The Fourier series of the periodic Mathieu functions converge absolutely and uniformly on all compact sets in the z-plane. For n=0,1,2,3,,

28.4.1 ce2n(z,q) =m=0A2m2n(q)cos2mz,
28.4.2 ce2n+1(z,q) =m=0A2m+12n+1(q)cos(2m+1)z,
28.4.3 se2n+1(z,q) =m=0B2m+12n+1(q)sin(2m+1)z,
28.4.4 se2n+2(z,q) =m=0B2m+22n+2(q)sin(2m+2)z.

§28.4(ii) Recurrence Relations

28.4.5 aA0qA2 =0,
(a4)A2q(2A0+A4) =0,
(a4m2)A2mq(A2m2+A2m+2) =0,
m=2,3,4,, a=a2n(q), A2m=A2m2n(q).
28.4.6 (a1q)A1qA3 =0,
(a(2m+1)2)A2m+1q(A2m1+A2m+3) =0,
m=1,2,3,, a=a2n+1(q), A2m+1=A2m+12n+1(q).
28.4.7 (a1+q)B1qB3 =0,
(a(2m+1)2)B2m+1q(B2m1+B2m+3) =0,
m=1,2,3,, a=b2n+1(q), B2m+1=B2m+12n+1(q).
28.4.8 (a4)B2qB4 =0,
(a4m2)B2mq(B2m2+B2m+2) =0,
m=2,3,4,, a=b2n+2(q), B2m+2=B2m+22n+2(q).

§28.4(iii) Normalization

28.4.9 2(A02n(q))2+m=1(A2m2n(q))2=1,
28.4.10 m=0(A2m+12n+1(q))2 =1,
28.4.11 m=0(B2m+12n+1(q))2 =1,
28.4.12 m=0(B2m+22n+2(q))2 =1.

Ambiguities in sign are resolved by (28.4.13)–(28.4.16) when q=0, and by continuity for the other values of q.

§28.4(iv) Case q=0

28.4.13 A00(0) =1/2,A2n2n(0)=1,
n>0,
A2m2n(0) =0,
nm,
28.4.14 A2n+12n+1(0) =1,
A2m+12n+1(0) =0,
nm,
28.4.15 B2n+12n+1(0) =1,
B2m+12n+1(0) =0,
nm,
28.4.16 B2n+22n+2(0) =1,
B2m+22n+2(0) =0,
nm.

§28.4(v) Change of Sign of q

28.4.17 A2m2n(q) =(1)nmA2m2n(q),
28.4.18 B2m+22n+2(q) =(1)nmB2m+22n+2(q),
28.4.19 A2m+12n+1(q) =(1)nmB2m+12n+1(q),
28.4.20 B2m+12n+1(q) =(1)nmA2m+12n+1(q).

§28.4(vi) Behavior for Small q

For fixed s=1,2,3, and fixed m=1,2,3,,

28.4.21 A2s0(q)=((1)s2(s!)2(q4)s+O(qs+2))A00(q),
28.4.22 Am+2sm(q)Bm+2sm(q)}=((1)sm!s!(m+s)!(q4)s+O(qs+1)){Amm(q),Bmm(q),
28.4.23 Am2sm(q)Bm2sm(q)}=((ms1)!s!(m1)!(q4)s+O(qs+1)){Amm(q),Bmm(q).

For further terms and expansions see Meixner and Schäfke (1954, p. 122) and McLachlan (1947, §3.33).

§28.4(vii) Asymptotic Forms for Large m

As m, with fixed q (0) and fixed n,

28.4.24 A2m2n(q)A02n(q) =(1)m(m!)2(q4)mπ(1+O(m1))wII(12π;a2n(q),q),
28.4.25 A2m+12n+1(q)A12n+1(q) =(1)m+1((12)m+1)2(q4)m+12(1+O(m1))wII(12π;a2n+1(q),q),
28.4.26 B2m+12n+1(q)B12n+1(q) =(1)m((12)m+1)2(q4)m+12(1+O(m1))wI(12π;b2n+1(q),q),
28.4.27 B2m2n+2(q)B22n+2(q) =(1)m(m!)2(q4)mqπ(1+O(m1))wI(12π;b2n+2(q),q).

For the basic solutions wI and wII see §28.2(ii).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././28.4#ii

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy