Content-Length: 91854 | pFad | https://dlmf.nist.gov/./../././././bib/../././././.././././././././bib/.././not/.././not/C

DLMF: Notations C ‣ Notations
About the Project
Notations

Notations C

complex plane; Common Notations and Definitions
is contained in; Common Notations and Definitions
is, or is contained in; Common Notations and Definitions
C(I) or C(a,b)
continuous on an interval I or (a,b); §1.4(ii)
C ( n )
Catalan number; (26.5.1)
c ( n )
number of compositions of n; §26.11
C ( z )
Fresnel integral; (7.2.7)
C 1 ( z ) = C ( 2 / π z )
alternative notation for the Fresnel integral; §7.1
(with C(z): Fresnel integral and π: the ratio of the circumference of a circle to its diameter)
C 2 ( z ) = C ( 2 z / π )
alternative notation for the Fresnel integral; §7.1
(with C(z): Fresnel integral and π: the ratio of the circumference of a circle to its diameter)
c k ( n )
Ramanujan’s sum; (27.10.4)
C ( η )
normalizing constant for Coulomb radial functions; (33.2.5)
c m ( n )
number of compositions of n into exactly m parts; §26.11
C n ( x )
dilated Chebyshev polynomial; (18.1.3)
𝒞 ν ( z )
cylinder function; §10.2(ii)
Cn(I) or Cn(a,b)
continuously differentiable n times on an interval I or (a,b); §1.4(iii)
C(I) or C(a,b)
infinitely differentiable on an interval I or (a,b); §1.4(iii)
C α ( λ ) ( z )
Gegenbauer function; (15.9.15)
C n ( λ ) ( x )
ultraspherical (or Gegenbauer) polynomial; Table 18.3.1
c ( condition , n )
restricted number of compositions of n; §26.11
C n ( x ; a )
Charlier polynomial; Table 18.19.1
C n m ( z , ξ )
Ince polynomials; §28.31(ii)
c ( ϵ , ; r )
irregular Coulomb function; (33.14.9)
C ( f , h ) ( x )
cardinal function; (3.3.43)
C n ( x ; β | q )
continuous q-ultraspherical polynomial; (18.28.13)
cd ( z , k )
Jacobian elliptic function; (22.2.8)
𝑐𝑑𝐸 2 n + 2 m ( z , k 2 )
Lamé polynomial; (29.12.7)
ce n ( z , q )
Mathieu function; §28.2(vi)
Ce ν ( z , q )
modified Mathieu function; (28.20.3)
𝑐𝐸 2 n + 1 m ( z , k 2 )
Lamé polynomial; (29.12.3)
ce ν ( z , q )
Mathieu function of noninteger order; (28.12.12)
ceh n ( z , q ) = Ce n ( z , q )
notation used by Campbell (1955); §28.1
(with Ceν(z,q): modified Mathieu function)
cel ( k c , p , a , b )
Bulirsch’s complete elliptic integral; (19.2.11)
χ ( n )
Dirichlet character; §27.8
χ ( x )
ratio of gamma functions; §9.7(i)
Chi ( z )
hyperbolic cosine integral; (6.2.16)
Ci ( z )
cosine integral; (6.2.11)
Ci ( a , z )
generalized cosine integral; (8.21.2)
ci ( a , z )
generalized cosine integral; (8.21.1)
Cin ( z )
cosine integral; (6.2.12)
cn ( z , k )
Jacobian elliptic function; (22.2.5)
cn ( z | m ) = cn ( z , m )
alternative notation; §22.1
(with cn(z,k): Jacobian elliptic function)
cos z
cosine function; (4.14.2)
Cos q ( x )
q-cosine function; (17.3.6)
cos q ( x )
q-cosine function; (17.3.5)
cosh z
hyperbolic cosine function; (4.28.2)
cot z
cotangent function; (4.14.7)
coth z
hyperbolic cotangent function; (4.28.7)
cs ( z , k )
Jacobian elliptic function; (22.2.9)
csc z
cosecant function; (4.14.5)
csch z
hyperbolic cosecant function; (4.28.5)
curl
of vector-valued function; (1.6.22)








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././bib/../././././.././././././././bib/.././not/.././not/C

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy