Content-Length: 271567 | pFad | https://dlmf.nist.gov/./../././././bib/.././././bib/.././bib/../././bib/.././././13.3#E28

DLMF: §13.3 Recurrence Relations and Derivatives ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsKummer Functions

§13.3 Recurrence Relations and Derivatives

Contents
  1. §13.3(i) Recurrence Relations
  2. §13.3(ii) Differentiation Formulas

§13.3(i) Recurrence Relations

13.3.1 (ba)M(a1,b,z)+(2ab+z)M(a,b,z)aM(a+1,b,z) =0,
13.3.2 b(b1)M(a,b1,z)+b(1bz)M(a,b,z)+z(ba)M(a,b+1,z) =0,
13.3.3 (ab+1)M(a,b,z)aM(a+1,b,z)+(b1)M(a,b1,z) =0,
13.3.4 bM(a,b,z)bM(a1,b,z)zM(a,b+1,z) =0,
13.3.5 b(a+z)M(a,b,z)+z(ab)M(a,b+1,z)abM(a+1,b,z) =0,
13.3.6 (a1+z)M(a,b,z)+(ba)M(a1,b,z)+(1b)M(a,b1,z) =0.
13.3.7 U(a1,b,z)+(b2az)U(a,b,z)+a(ab+1)U(a+1,b,z) =0,
13.3.8 (ba1)U(a,b1,z)+(1bz)U(a,b,z)+zU(a,b+1,z) =0,
13.3.9 U(a,b,z)aU(a+1,b,z)U(a,b1,z) =0,
13.3.10 (ba)U(a,b,z)+U(a1,b,z)zU(a,b+1,z) =0,
13.3.11 (a+z)U(a,b,z)zU(a,b+1,z)+a(ba1)U(a+1,b,z) =0,
13.3.12 (a1+z)U(a,b,z)U(a1,b,z)+(ab+1)U(a,b1,z) =0.

Kummer’s differential equation (13.2.1) is equivalent to

13.3.13 (a+1)zM(a+2,b+2,z)+(b+1)(bz)M(a+1,b+1,z)b(b+1)M(a,b,z)=0,

and

13.3.14 (a+1)zU(a+2,b+2,z)+(zb)U(a+1,b+1,z)U(a,b,z)=0.

§13.3(ii) Differentiation Formulas

13.3.15 ddzM(a,b,z)=abM(a+1,b+1,z),
13.3.16 dndznM(a,b,z)=(a)n(b)nM(a+n,b+n,z),
13.3.17 (zddzz)n(za1M(a,b,z))=(a)nza+n1M(a+n,b,z),
13.3.18 dndzn(zb1M(a,b,z))=(bn)nzbn1M(a,bn,z),
13.3.19 (zddzz)n(zba1ezM(a,b,z))=(ba)nzba+n1ezM(an,b,z),
13.3.20 dndzn(ezM(a,b,z))=(1)n(ba)n(b)nezM(a,b+n,z),
13.3.21 dndzn(zb1ezM(a,b,z))=(bn)nzbn1ezM(an,bn,z).
13.3.22 ddzU(a,b,z)=aU(a+1,b+1,z),
13.3.23 dndznU(a,b,z)=(1)n(a)nU(a+n,b+n,z),
13.3.24 (zddzz)n(za1U(a,b,z))=(a)n(ab+1)nza+n1U(a+n,b,z),
13.3.25 dndzn(zb1U(a,b,z))=(1)n(ab+1)nzbn1U(a,bn,z),
13.3.26 (zddzz)n(zba1ezU(a,b,z))=(1)nzba+n1ezU(an,b,z),
13.3.27 dndzn(ezU(a,b,z))=(1)nezU(a,b+n,z),
13.3.28 dndzn(zb1ezU(a,b,z))=(1)nzbn1ezU(an,bn,z).

Other versions of several of the identities in this subsection can be constructed with the aid of the operator identity

13.3.29 (zddzz)n=zndndznzn,
n=1,2,3,.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././bib/.././././bib/.././bib/../././bib/.././././13.3#E28

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy