Content-Length: 92428 | pFad | https://dlmf.nist.gov/./../././././bib/../././19.1#p1.t1.r2
(For other notation see Notation for the Special Functions.)
nonnegative integers. | |
real or complex argument (or amplitude). | |
real or complex modulus. | |
complementary real or complex modulus, . | |
real or complex parameter. | |
beta function (§5.12). |
All square roots have their principal values. All derivatives are denoted by differentials, not by primes.
The first set of main functions treated in this chapter are Legendre’s complete integrals
19.1.1 | |||
of the first, second, and third kinds, respectively, and Legendre’s incomplete integrals
19.1.2 | |||
of the first, second, and third kinds, respectively. This notation follows Byrd and Friedman (1971, 110). We use also the function , introduced by Jahnke et al. (1966, p. 43). The functions (19.1.1) and (19.1.2) are used in Erdélyi et al. (1953b, Chapter 13), except that and are denoted by and , respectively, where .
In Abramowitz and Stegun (1964, Chapter 17) the functions (19.1.1) and (19.1.2) are denoted, in order, by , , , , , and , where and is the (not related to ) in (19.1.1) and (19.1.2). Also, frequently in this reference is replaced by and by , where . However, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF.
The second set of main functions treated in this chapter is
19.1.3 | , | ||
, | |||
, | |||
, | |||
, | |||
, , and are the symmetric (in , , and ) integrals of the first, second, and third kinds; they are complete if exactly one of , , and is identically 0.
is a multivariate hypergeometric function that includes all the functions in (19.1.3).
Fetched URL: https://dlmf.nist.gov/./../././././bib/../././19.1#p1.t1.r2
Alternative Proxies: