Content-Length: 155153 | pFad | https://dlmf.nist.gov/./../././././bib/.././4.40#iii.info

DLMF: §4.40 Integrals ‣ Hyperbolic Functions ‣ Chapter 4 Elementary Functions
About the Project
4 Elementary FunctionsHyperbolic Functions

§4.40 Integrals

Contents
  1. §4.40(i) Introduction
  2. §4.40(ii) Indefinite Integrals
  3. §4.40(iii) Definite Integrals
  4. §4.40(iv) Inverse Hyperbolic Functions
  5. §4.40(v) Compendia

§4.40(i) Introduction

Throughout this section the variables are assumed to be real. The results in §§4.40(ii) and 4.40(iv) can be extended to the complex plane by using continuous branches and avoiding singularities.

§4.40(ii) Indefinite Integrals

4.40.1 sinhxdx =coshx,
4.40.2 coshxdx =sinhx,
4.40.3 tanhxdx =ln(coshx).
4.40.4 cschxdx =ln(tanh(12x)),
0<x<.
4.40.5 sechxdx =gd(x).

For the right-hand side see (4.23.39) and (4.23.40).

4.40.6 cothxdx=ln(sinhx),
0<x<.

§4.40(iii) Definite Integrals

4.40.7 0exsin(ax)sinhxdx=12πcoth(12πa)1a,
a0,
4.40.8 0sinh(ax)sinh(πx)dx=12tan(12a),
π<a<π,
4.40.9 eax(cosh(12x))2dx=4πasin(πa),
1<a<1,
4.40.10 0tanh(ax)tanh(bx)xdx=ln(ab),
a>0, b>0.

§4.40(iv) Inverse Hyperbolic Functions

4.40.11 arcsinhxdx=xarcsinhx(1+x2)1/2.
4.40.12 arccoshxdx=xarccoshx(x21)1/2,
1<x<,
4.40.13 arctanhxdx=xarctanhx+12ln(1x2),
1<x<1,
4.40.14 arccschxdx=xarccschx+arcsinhx,
0<x<,
4.40.15 arcsechxdx=xarcsechx+arcsinx,
0<x<1,
4.40.16 arccothxdx=xarccothx+12ln(x21),
1<x<.

§4.40(v) Compendia

Extensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2015, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././././bib/.././4.40#iii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy