Content-Length: 130238 | pFad | https://dlmf.nist.gov/./.././././.././././../././bib/.././././../././19.4#ii.p1

DLMF: §19.4 Derivatives and Differential Equations ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals
About the Project
19 Elliptic IntegralsLegendre’s Integrals

§19.4 Derivatives and Differential Equations

Contents
  1. §19.4(i) Derivatives
  2. §19.4(ii) Differential Equations

§19.4(i) Derivatives

19.4.1 dK(k)dk =E(k)k2K(k)kk2,
d(E(k)k2K(k))dk =kK(k),
19.4.2 dE(k)dk =E(k)K(k)k,
d(E(k)K(k))dk =kE(k)k2,
19.4.3 d2E(k)dk2=1kdK(k)dk=k2K(k)E(k)k2k2,
19.4.4 Π(α2,k)k=kk2(k2α2)(E(k)k2Π(α2,k)).
19.4.5 F(ϕ,k)k=E(ϕ,k)k2F(ϕ,k)kk2ksinϕcosϕk21k2sin2ϕ,
19.4.6 E(ϕ,k)k=E(ϕ,k)F(ϕ,k)k,
19.4.7 Π(ϕ,α2,k)k=kk2(k2α2)(E(ϕ,k)k2Π(ϕ,α2,k)k2sinϕcosϕ1k2sin2ϕ).

§19.4(ii) Differential Equations

Let Dk=/k. Then

19.4.8 (kk2Dk2+(13k2)Dkk)F(ϕ,k)=ksinϕcosϕ(1k2sin2ϕ)3/2,
19.4.9 (kk2Dk2+k2Dk+k)E(ϕ,k)=ksinϕcosϕ1k2sin2ϕ.

If ϕ=π/2, then these two equations become hypergeometric differential equations (15.10.1) for K(k) and E(k). An analogous differential equation of third order for Π(ϕ,α2,k) is given in Byrd and Friedman (1971, 118.03).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././.././././../././bib/.././././../././19.4#ii.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy