Content-Length: 49151 | pFad | https://dlmf.nist.gov/./.././././.././././../././bib/.././././.././bib/../././bib/.././././34.8#p2

DLMF: Β§34.8 Approximations for Large Parameters β€£ Properties β€£ Chapter 34 3⁒𝑗,6⁒𝑗,9⁒𝑗 Symbols
About the Project
34 3j, 6j, 9j SymbolsProperties

Β§34.8 Approximations for Large Parameters

For large values of the parameters in the 3⁒j, 6⁒j, and 9⁒j symbols, different asymptotic forms are obtained depending on which parameters are large. For example,

34.8.1 {j1j2j3j2j1l3}=(βˆ’1)j1+j2+j3+l3⁒(4π⁒(2⁒j1+1)⁒(2⁒j2+1)⁒(2⁒l3+1)⁒sin⁑θ)12Γ—(cos⁑((l3+12)β’ΞΈβˆ’14⁒π)+o⁑(1)),
j1,j2,j3≫l3≫1,

where

34.8.2 cos⁑θ=j1⁒(j1+1)+j2⁒(j2+1)βˆ’j3⁒(j3+1)2⁒j1⁒(j1+1)⁒j2⁒(j2+1),

and the symbol o⁑(1) denotes a quantity that tends to zero as the parameters tend to infinity, as in §2.1(i).

Semiclassical (WKBJ) approximations in terms of trigonometric or exponential functions are given in Varshalovich et al. (1988, §§8.9, 9.9, 10.7). Uniform approximations in terms of Airy functions for the 3⁒j and 6⁒j symbols are given in Schulten and Gordon (1975b). For approximations for the 3⁒j, 6⁒j, and 9⁒j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././.././././../././bib/.././././.././bib/../././bib/.././././34.8#p2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy