Content-Length: 87817 | pFad | https://dlmf.nist.gov/./.././././.././././../././bib/.././././.././bib/../././bib/.././14.13#p3

DLMF: §14.13 Trigonometric Expansions ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
About the Project
14 Legendre and Related FunctionsReal Arguments

§14.13 Trigonometric Expansions

When 0<θ<π, and ν+μ is not a negative integer,

14.13.1 𝖯νμ(cosθ) =2μ+1(sinθ)μπ1/2k=0Γ(ν+μ+k+1)Γ(ν+k+32)(μ+12)kk!sin((ν+μ+2k+1)θ),
14.13.2 𝖰νμ(cosθ) =π1/22μ(sinθ)μk=0Γ(ν+μ+k+1)Γ(ν+k+32)(μ+12)kk!cos((ν+μ+2k+1)θ).

These Fourier series converge absolutely when μ<0. If 0μ<12 then they converge, but, if θ12π, they do not converge absolutely.

In particular,

14.13.3 𝖯n(cosθ) =22n+2(n!)2π(2n+1)!k=013(2k1)k!(n+1)(n+2)(n+k)(2n+3)(2n+5)(2n+2k+1)×sin((n+2k+1)θ),
14.13.4 𝖰n(cosθ) =22n+1(n!)2(2n+1)!k=013(2k1)k!(n+1)(n+2)(n+k)(2n+3)(2n+5)(2n+2k+1)×cos((n+2k+1)θ),

with conditional convergence for each.

For other trigonometric expansions see Erdélyi et al. (1953a, pp. 146–147).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././.././././../././bib/.././././.././bib/../././bib/.././14.13#p3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy