Content-Length: 125950 | pFad | https://dlmf.nist.gov/./.././././.././././.././24.13#i.info

DLMF: §24.13 Integrals ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials
About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.13 Integrals

Contents
  1. §24.13(i) Bernoulli Polynomials
  2. §24.13(ii) Euler Polynomials
  3. §24.13(iii) Compendia

§24.13(i) Bernoulli Polynomials

24.13.1 Bn(t)dt =Bn+1(t)n+1+const.,
24.13.2 xx+1Bn(t)dt =xn,
n=1,2,,
24.13.3 xx+(1/2)Bn(t)dt =En(2x)2n+1,
24.13.4 01/2Bn(t)dt =12n+12nBn+1n+1,
24.13.5 1/43/4Bn(t)dt =En22n+1.

For m,n=1,2,,

24.13.6 01Bn(t)Bm(t)dt=(1)n1m!n!(m+n)!Bm+n.

For integrals of the form 0xBn(t)Bm(t)dt and 0xBn(t)Bm(t)Bk(t)dt see Agoh and Dilcher (2011).

§24.13(ii) Euler Polynomials

24.13.7 En(t)dt=En+1(t)n+1+const.,
24.13.8 01En(t)dt=2En+1(0)n+1=4(2n+21)(n+1)(n+2)Bn+2,
24.13.9 01/2E2n(t)dt=E2n+1(0)2n+1=2(22n+21)B2n+2(2n+1)(2n+2),
24.13.10 01/2E2n1(t)dt=E2nn22n+1,
n=1,2,.

For m,n=1,2,,

24.13.11 01En(t)Em(t)dt=(1)n4(2m+n+21)m!n!(m+n+2)!Bm+n+2.

§24.13(iii) Compendia

For Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). For other integrals see Prudnikov et al. (1990, pp. 55–57).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././.././././.././24.13#i.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy