Content-Length: 209736 | pFad | https://dlmf.nist.gov/./.././././.././30.11#vi.p2

DLMF: §30.11 Radial Spheroidal Wave Functions ‣ Properties ‣ Chapter 30 Spheroidal Wave Functions
About the Project
30 Spheroidal Wave FunctionsProperties

§30.11 Radial Spheroidal Wave Functions

Contents
  1. §30.11(i) Definitions
  2. §30.11(ii) Graphics
  3. §30.11(iii) Asymptotic Behavior
  4. §30.11(iv) Wronskian
  5. §30.11(v) Connection with the 𝑃𝑠 and 𝑄𝑠 Functions
  6. §30.11(vi) Integral Representations

§30.11(i) Definitions

Denote

30.11.1 ψk(j)(z)=(π2z)12𝒞k+12(j)(z),
j=1,2,3,4,

where

30.11.2 𝒞ν(1) =Jν,
𝒞ν(2) =Yν,
𝒞ν(3) =Hν(1),
𝒞ν(4) =Hν(2),

with Jν, Yν, Hν(1), and Hν(2) as in §10.2(ii). Then solutions of (30.2.1) with μ=m and λ=λnm(γ2) are given by

30.11.3 Snm(j)(z,γ)=(1z2)12mAnm(γ2)2kmnan,km(γ2)ψn+2k(j)(γz).

Here an,km(γ2) is defined by (30.8.2) and (30.8.6), and

30.11.4 An±m(γ2)=2kmn(1)kan,k±m(γ2)(0).

In (30.11.3) z0 when j=1, and |z|>1 when j=2,3,4.

Connection Formulas

30.11.5 Snm(3)(z,γ) =Snm(1)(z,γ)+iSnm(2)(z,γ),
Snm(4)(z,γ) =Snm(1)(z,γ)iSnm(2)(z,γ).

§30.11(ii) Graphics

See accompanying text
Figure 30.11.1: Sn0(1)(x,2), n=0,1, 1x10. Magnify
See accompanying text
Figure 30.11.2: Sn0(1)(iy,2i), n=0,1, 0y10. Magnify
See accompanying text
Figure 30.11.3: Sn1(1)(x,2), n=1,2, 1x10. Magnify
See accompanying text
Figure 30.11.4: Sn1(1)(iy,2i), n=1,2, 0y10. Magnify

§30.11(iii) Asymptotic Behavior

For fixed γ, as z in the sector |phz|πδ (<π),

30.11.6 Snm(j)(z,γ)={ψn(j)(γz)+O(z2e|z|),j=1,2,ψn(j)(γz)(1+O(z1)),j=3,4.

For asymptotic expansions in negative powers of z see Meixner and Schäfke (1954, p. 293).

§30.11(iv) Wronskian

30.11.7 𝒲{Snm(1)(z,γ),Snm(2)(z,γ)}=1γ(z21).

§30.11(v) Connection with the 𝑃𝑠 and 𝑄𝑠 Functions

30.11.8 Snm(1)(z,γ)=Knm(γ)𝑃𝑠nm(z,γ2),
30.11.9 Snm(2)(z,γ)=(nm)!(n+m)!(1)m+1𝑄𝑠nm(z,γ2)γKnm(γ)Anm(γ2)Anm(γ2),

where

30.11.10 Knm(γ)=π2(γ2)m(1)man,12(mn)m(γ2)Γ(32+m)Anm(γ2)𝖯𝗌nm(0,γ2),
nm even,

or

30.11.11 Knm(γ)=π2(γ2)m+1(1)man,12(mn+1)m(γ2)Γ(52+m)Anm(γ2)(d𝖯𝗌nm(z,γ2)/dz|z=0),
nm odd.

§30.11(vi) Integral Representations

When z(,1]

30.11.12 Anm(γ2)Snm(1)(z,γ)=12im+nγm(nm)!(n+m)!zm(1z2)12m11eiγzt(1t2)12m𝖯𝗌nm(t,γ2)dt.

For further relations see Arscott (1964b, §8.6), Connett et al. (1993), Erdélyi et al. (1955, §16.13), Meixner and Schäfke (1954), and Meixner et al. (1980, §3.1).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././.././30.11#vi.p2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy