Content-Length: 69708 | pFad | https://dlmf.nist.gov/./.././././bib/.././././././4.9#i.p1

DLMF: §4.9 Continued Fractions ‣ Logarithm, Exponential, Powers ‣ Chapter 4 Elementary Functions
About the Project
4 Elementary FunctionsLogarithm, Exponential, Powers

§4.9 Continued Fractions

Contents
  1. §4.9(i) Logarithms
  2. §4.9(ii) Exponentials
  3. §4.9(iii) Powers

§4.9(i) Logarithms

4.9.1 ln(1+z)=z1+z2+z3+4z4+4z5+9z6+9z7+,
|ph(1+z)|<π.
4.9.2 ln(1+z1z)=2z1z234z259z2716z29,

valid when z(,1][1,); see Figure 4.23.1(i).

For other continued fractions involving logarithms see Lorentzen and Waadeland (1992, pp. 566–568). See also Cuyt et al. (2008, pp. 196–200).

§4.9(ii) Exponentials

For z,

4.9.3 ez =11z1+z2z3+z2z5+z2
=1+z1z2+z3z2+z5z2+z7
=1+z1(z/2)+z2/(43)1+z2/(415)1+z2/(435)1+z2/(4(4n21))1+
4.9.4 ezen1(z)=znn!n!z(n+1)+z(n+2)(n+1)z(n+3)+2z(n+4)(n+2)z(n+5)+3z(n+6),

where

4.9.5 en(z)=k=0nzkk!.

For other continued fractions involving the exponential function see Lorentzen and Waadeland (1992, pp. 563–564). See also Cuyt et al. (2008, pp. 193–195).

§4.9(iii) Powers

See Cuyt et al. (2008, pp. 217–220).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/.././././././4.9#i.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy