Content-Length: 91342 | pFad | https://dlmf.nist.gov/./.././././bib/.././././bib/.././.././././bib/.././././bib/.././././18.4#F7

DLMF: §18.4 Graphics ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials
About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.4 Graphics

Contents
  1. §18.4(i) Graphs
  2. §18.4(ii) Surfaces

§18.4(i) Graphs

See accompanying text
Figure 18.4.1: Jacobi polynomials Pn(1.5,0.5)(x), n=1,2,3,4,5. Magnify
See accompanying text
Figure 18.4.2: Jacobi polynomials Pn(1.25,0.75)(x), n=7,8. This illustrates inequalities for extrema of a Jacobi polynomial; see (18.14.16). See also Askey (1990). Magnify
See accompanying text
Figure 18.4.3: Chebyshev polynomials Tn(x), n=1,2,3,4,5. Magnify
See accompanying text
Figure 18.4.4: Legendre polynomials Pn(x), n=1,2,3,4,5. Magnify
See accompanying text
Figure 18.4.5: Laguerre polynomials Ln(x), n=1,2,3,4,5. Magnify
See accompanying text
Figure 18.4.6: Laguerre polynomials L3(α)(x), α=0,1,2,3,4. Magnify
See accompanying text
Figure 18.4.7: Monic Hermite polynomials hn(x)=2nHn(x), n=1,2,3,4,5. Magnify

§18.4(ii) Surfaces

See accompanying text
Figure 18.4.8: Laguerre polynomials L3(α)(x), 0α3, 0x10. Magnify 3D Help
See accompanying text
Figure 18.4.9: Laguerre polynomials L4(α)(x), 0α3, 0x10. Magnify 3D Help








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/.././././bib/.././.././././bib/.././././bib/.././././18.4#F7

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy