Content-Length: 352954 | pFad | https://dlmf.nist.gov/./.././././bib/../././9.6#iii.info

DLMF: §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions
About the Project
9 Airy and Related FunctionsAiry Functions

§9.6 Relations to Other Functions

Contents
  1. §9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
  2. §9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
  3. §9.6(iii) Airy Functions as Confluent Hypergeometric Functions

§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions

For the notation see §§10.2(ii) and 10.25(ii). With

9.6.1 ζ=23z3/2,
9.6.2 Ai(z) =π1z/3K±1/3(ζ)
=13z(I1/3(ζ)I1/3(ζ))
=12z/3e2πi/3H1/3(1)(ζeπi/2)
=12z/3eπi/3H1/3(1)(ζeπi/2)
=12z/3e2πi/3H1/3(2)(ζeπi/2)
=12z/3eπi/3H1/3(2)(ζeπi/2),
9.6.3 Ai(z) =π1(z/3)K±2/3(ζ)
=(z/3)(I2/3(ζ)I2/3(ζ))
=12(z/3)eπi/6H2/3(1)(ζeπi/2)
=12(z/3)e5πi/6H2/3(1)(ζeπi/2)
=12(z/3)eπi/6H2/3(2)(ζeπi/2)
=12(z/3)e5πi/6H2/3(2)(ζeπi/2),
9.6.4 Bi(z) =z/3(I1/3(ζ)+I1/3(ζ))=12z/3(eπi/6H1/3(1)(ζeπi/2)+eπi/6H1/3(2)(ζeπi/2))=12z/3(eπi/6H1/3(1)(ζeπi/2)+eπi/6H1/3(2)(ζeπi/2)),
9.6.5 Bi(z) =(z/3)(I2/3(ζ)+I2/3(ζ))=12(z/3)(eπi/3H2/3(1)(ζeπi/2)+eπi/3H2/3(2)(ζeπi/2))=12(z/3)(eπi/3H2/3(1)(ζeπi/2)+eπi/3H2/3(2)(ζeπi/2)),
9.6.6 Ai(z)=(z/3)(J1/3(ζ)+J1/3(ζ))=12z/3(eπi/6H1/3(1)(ζ)+eπi/6H1/3(2)(ζ))=12z/3(eπi/6H1/3(1)(ζ)+eπi/6H1/3(2)(ζ)),
9.6.7 Ai(z)=(z/3)(J2/3(ζ)J2/3(ζ))=12(z/3)(eπi/6H2/3(1)(ζ)+eπi/6H2/3(2)(ζ))=12(z/3)(e5πi/6H2/3(1)(ζ)+e5πi/6H2/3(2)(ζ)),
9.6.8 Bi(z)=z/3(J1/3(ζ)J1/3(ζ))=12z/3(e2πi/3H1/3(1)(ζ)+e2πi/3H1/3(2)(ζ))=12z/3(eπi/3H1/3(1)(ζ)+eπi/3H1/3(2)(ζ)),
9.6.9 Bi(z)=(z/3)(J2/3(ζ)+J2/3(ζ))=12(z/3)(eπi/3H2/3(1)(ζ)+eπi/3H2/3(2)(ζ))=12(z/3)(eπi/3H2/3(1)(ζ)+eπi/3H2/3(2)(ζ)).

§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions

Again, for the notation see §§10.2(ii) and 10.25(ii). With

9.6.10 z=(32ζ)2/3,
9.6.11 J±1/3(ζ) =123/z(3Ai(z)Bi(z)),
9.6.12 J±2/3(ζ) =12(3/z)(±3Ai(z)+Bi(z)),
9.6.13 I±1/3(ζ) =123/z(3Ai(z)+Bi(z)),
9.6.14 I±2/3(ζ) =12(3/z)(±3Ai(z)+Bi(z)),
9.6.15 K±1/3(ζ) =π3/zAi(z),
9.6.16 K±2/3(ζ) =π(3/z)Ai(z),
9.6.17 H1/3(1)(ζ) =eπi/3H1/3(1)(ζ)=eπi/63/z(Ai(z)iBi(z)),
9.6.18 H2/3(1)(ζ) =e2πi/3H2/3(1)(ζ)=eπi/6(3/z)(Ai(z)iBi(z)),
9.6.19 H1/3(2)(ζ) =eπi/3H1/3(2)(ζ)=eπi/63/z(Ai(z)+iBi(z)),
9.6.20 H2/3(2)(ζ) =e2πi/3H2/3(2)(ζ)=eπi/6(3/z)(Ai(z)+iBi(z)).

§9.6(iii) Airy Functions as Confluent Hypergeometric Functions

For the notation see §§13.1, 13.2, and 13.14(i). With ζ as in (9.6.1),

9.6.21 Ai(z) =12π1/2z1/4W0,1/3(2ζ)=31/6π1/2ζ2/3eζU(56,53,2ζ),
9.6.22 Ai(z) =12π1/2z1/4W0,2/3(2ζ)=31/6π1/2ζ4/3eζU(76,73,2ζ),
9.6.23 Bi(z) =121/3Γ(23)z1/4M0,1/3(2ζ)+325/3Γ(13)z1/4M0,1/3(2ζ),
9.6.24 Bi(z) =21/3Γ(13)z1/4M0,2/3(2ζ)+3210/3Γ(23)z1/4M0,2/3(2ζ),
9.6.25 Bi(z) =131/6Γ(23)eζF11(16;13;2ζ)+35/622/3Γ(13)ζ2/3eζF11(56;53;2ζ),
9.6.26 Bi(z) =31/6Γ(13)eζF11(16;13;2ζ)+37/627/3Γ(23)ζ4/3eζF11(76;73;2ζ).

To express Airy functions in terms of hypergeometric functions combine §9.6(i) with (10.39.9).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/../././9.6#iii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy