Content-Length: 79296 | pFad | https://dlmf.nist.gov/./.././././bib/../././bib/.././././././../././././././bib/.././24.11#info

DLMF: §24.11 Asymptotic Approximations ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials
About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.11 Asymptotic Approximations

As n

24.11.1 (1)n+1B2n 2(2n)!(2π)2n,
24.11.2 (1)n+1B2n 4πn(nπe)2n,
24.11.3 (1)nE2n 22n+2(2n)!π2n+1,
24.11.4 (1)nE2n 8nπ(4nπe)2n.

Also,

24.11.5 (1)n/21(2π)n2(n!)Bn(x) {cos(2πx),n even,sin(2πx),n odd,
24.11.6 (1)(n+1)/2πn+14(n!)En(x) {sin(πx),n even,cos(πx),n odd,

uniformly for x on compact subsets of .

For further results see Temme (1995b) and López and Temme (1999c).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/../././bib/.././././././../././././././bib/.././24.11#info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy