K. W. J. Kadell (1988)A proof of Askey’s conjectured -analogue of Selberg’s integral and a conjecture of Morris.
SIAM J. Math. Anal.19 (4), pp. 969–986.
W. Kahan (1987)Branch Cuts for Complex Elementary Functions or Much Ado About Nothing’s Sign Bit.
In The State of the Art in Numerical Analysis (Birmingham, 1986), A. Iserles and M. J. D. Powell (Eds.),
Inst. Math. Appl. Conf. Ser. New Ser., Vol. 9, pp. 165–211.
A. Kalähne (1907)Über die Wurzeln einiger Zylinderfunktionen und gewisser aus ihnen gebildeter Gleichungen.
Zeitschrift für Mathematik und Physik54, pp. 55–86 (German).
E. G. Kalnins, W. Miller, G. F. Torres del Castillo, and G. C. Williams (2000)Special Functions and Perturbations of Black Holes.
In Special Functions (Hong Kong, 1999),
pp. 140–151.
E. G. Kalnins and W. Miller (1993)Orthogonal Polynomials on -spheres: Gegenbauer, Jacobi and Heun.
In Topics in Polynomials of One and Several Variables and their
Applications,
pp. 299–322.
G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012)Bernstein, Pick, Poisson and related integral expressions for Lambert .
Integral Transforms Spec. Funct.23 (11), pp. 817–829.
E. Kanzieper (2002)Replica field theories, Painlevé transcendents, and exact correlation functions.
Phys. Rev. Lett.89 (25), pp. (250201–1)–(250201–4).
A. A. Kapaev and A. V. Kitaev (1993)Connection formulae for the first Painlevé transcendent in the complex domain.
Lett. Math. Phys.27 (4), pp. 243–252.
A. A. Kapaev (1991)Essential singularity of the Painlevé function of the second kind and the nonlinear Stokes phenomenon.
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI)187, pp. 139–170 (Russian).
ⓘ
Notes:
English translation: J. Math. Sci. 73(1995), no. 4,
pp. 500–517
P. L. Kapitsa (1951a)Heat conduction and diffusion in a fluid medium with a periodic flow. I. Determination of the wave transfer coefficient in a tube, slot, and canal.
Akad. Nauk SSSR. Žurnal Eksper. Teoret. Fiz.21, pp. 964–978.
D. Karp, A. Savenkova, and S. M. Sitnik (2007)Series expansions for the third incomplete elliptic integral via partial fraction decompositions.
J. Comput. Appl. Math.207 (2), pp. 331–337.
D. Karp and S. M. Sitnik (2007)Asymptotic approximations for the first incomplete elliptic integral near logarithmic singularity.
J. Comput. Appl. Math.205 (1), pp. 186–206.
A. V. Kashevarov (1998)The second Painlevé equation in electric probe theory. Some numerical solutions.
Zh. Vychisl. Mat. Mat. Fiz.38 (6), pp. 992–1000 (Russian).
ⓘ
Notes:
In Russian. English translation: Comput. Math. Math. Phys.
38(1998), no. 6, pp. 950–958
A. V. Kashevarov (2004)The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface.
Technical Physics49 (1), pp. 1–7.
M. Katsurada (2003)Asymptotic expansions of certain -series and a formula of Ramanujan for specific values of the Riemann zeta function.
Acta Arith.107 (3), pp. 269–298.
R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994)Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library.
ACM Trans. Math. Software20 (4), pp. 447–459.
J. P. Keating (1999)Periodic Orbits, Spectral Statistics, and the Riemann Zeros.
In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.),
pp. 1–15.
J. Keating (1993)The Riemann Zeta-Function and Quantum Chaology.
In Quantum Chaos (Varenna, 1991),
Proc. Internat. School of Phys. Enrico Fermi, CXIX, pp. 145–185.
M. K. Kerimov and S. L. Skorokhodov (1984a)Calculation of modified Bessel functions in a complex domain.
Zh. Vychisl. Mat. i Mat. Fiz.24 (5), pp. 650–664.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 24(3),
pp. 15–24
M. K. Kerimov and S. L. Skorokhodov (1984b)Calculation of the complex zeros of the modified Bessel function of the second kind and its derivatives.
Zh. Vychisl. Mat. i Mat. Fiz.24 (8), pp. 1150–1163.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 24(4),
pp. 115–123
M. K. Kerimov and S. L. Skorokhodov (1984c)Evaluation of complex zeros of Bessel functions and and their derivatives.
Zh. Vychisl. Mat. i Mat. Fiz.24 (10), pp. 1497–1513.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 24(5),
pp. 131–141
M. K. Kerimov and S. L. Skorokhodov (1985a)Calculation of the complex zeros of a Bessel function of the second kind and its derivatives.
Zh. Vychisl. Mat. i Mat. Fiz.25 (10), pp. 1457–1473, 1581 (Russian).
ⓘ
Notes:
In Russian. English translation: USSR Comput. Math. Math. Phys.,
25(1985), no. 5, pp. 117–128.
M. K. Kerimov and S. L. Skorokhodov (1985b)Calculation of the complex zeros of Hankel functions and their derivatives.
Zh. Vychisl. Mat. i Mat. Fiz.25 (11), pp. 1628–1643, 1741.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 25(6),
pp. 26–36
M. K. Kerimov and S. L. Skorokhodov (1985c)Calculation of the multiple zeros of the derivatives of the cylindrical Bessel functions and .
Zh. Vychisl. Mat. i Mat. Fiz.25 (12), pp. 1749–1760, 1918.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 25(6),
pp. 101–107
M. K. Kerimov and S. L. Skorokhodov (1986)On multiple zeros of derivatives of Bessel’s cylindrical functions.
Dokl. Akad. Nauk SSSR288 (2), pp. 285–288 (Russian).
ⓘ
Notes:
In Russian. English translation: Soviet Math. Dokl. 33(3),
650–653, (1986).
M. K. Kerimov and S. L. Skorokhodov (1987)On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions.
Zh. Vychisl. Mat. i Mat. Fiz.27 (11), pp. 1628–1639, 1758.
ⓘ
Notes:
English translation in U.S.S.R. Computational Math. and Math. Phys. 27(6),
pp. 18–25
M. K. Kerimov and S. L. Skorokhodov (1988)Multiple complex zeros of derivatives of the cylindrical Bessel functions.
Dokl. Akad. Nauk SSSR299 (3), pp. 614–618 (Russian).
ⓘ
Notes:
In Russian. English translation: Soviet Phys. Dokl.
33(3),196–198, (1988).
M. K. Kerimov (1980)Methods of computing the Riemann zeta-function and some generalizations of it.
USSR Comput. Math. and Math. Phys.20 (6), pp. 212–230.
M. K. Kerimov (2008)Overview of some new results concerning the theory and applications of the Rayleigh special function.
Comput. Math. Math. Phys.48 (9), pp. 1454–1507.
S. H. Khamis (1965)Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution.
Justus von Liebig Verlag, Darmstadt (German, English).
S. F. Khwaja and A. B. Olde Daalhuis (2012)Uniform asymptotic approximations for the Meixner-Sobolev polynomials.
Anal. Appl. (Singap.)10 (3), pp. 345–361.
S. F. Khwaja and A. B. Olde Daalhuis (2013)Exponentially accurate uniform asymptotic approximations for integrals and Bleistein’s method revisited.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.469 (2153), pp. 20130008, 12.
Y. S. Kim, A. K. Rathie, and R. B. Paris (2013)An extension of Saalschütz’s summation theorem for the series .
Integral Transforms Spec. Funct.24 (11), pp. 916–921.
B. J. King, R. V. Baier, and S. Hanish (1970)A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives.
NRL Report No. 7012
Naval Res. Lab. Washingtion, D.C..
B. J. King and A. L. Van Buren (1970)A Fortran computer program for calculating the prolate and oblate angle functions of the first kind and their first and second derivatives.
NRL Report No. 7161
Naval Res. Lab. Washingtion, D.C..
N. P. Kirk, J. N. L. Connor, and C. A. Hobbs (2000)An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives.
Computer Physics Comm.132 (1-2), pp. 142–165.
A. V. Kitaev, C. K. Law, and J. B. McLeod (1994)Rational solutions of the fifth Painlevé equation.
Differential Integral Equations7 (3-4), pp. 967–1000.
A. V. Kitaev and A. H. Vartanian (2004)Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I.
Inverse Problems20 (4), pp. 1165–1206.
A. V. Kitaev (1987)The method of isomonodromic deformations and the asymptotics of the solutions of the “complete” third Painlevé equation.
Mat. Sb. (N.S.)134(176) (3), pp. 421–444, 448 (Russian).
ⓘ
Notes:
In Russian. English translation: Math. USSR-Sb.
62(1989), no. 2, pp. 421–444.
A. Kneser (1927)Neue Untersuchungen einer Reihe aus der Theorie der elliptischen Funktionen.
Journal für die Reine und Angenwandte Mathematik158, pp. 209–218 (German).
K. Knopp (1964)Theorie und Anwendung der unendlichen Reihen.
4th edition, Die Grundlehren der mathematischen Wissenschaften, Band 2, Springer-Verlag, Berlin-Heidelberg (German).
ⓘ
Notes:
A translation by R. C. Young appeared in 1928,
Theory and Application of Infinite Series, Blackie, 571pp.
D. E. Knuth (1968)The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
1st edition, Addison-Wesley Publishing Co., Reading, MA-London-Don Mills, Ont.
ⓘ
Notes:
Second printing of second edition by Addison-Wesley Publishing Co.,
Reading, MA-London-Amsterdam, 1975.
M. Kodama (2008)Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument.
ACM Trans. Math. Software34 (4), pp. Art. 22, 21.
M. Kodama (2011)Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument.
ACM Trans. Math. Software37 (4), pp. Art. 47, 25.
J. Koekoek, R. Koekoek, and H. Bavinck (1998)On differential equations for Sobolev-type Laguerre polynomials.
Trans. Amer. Math. Soc.350 (1), pp. 347–393.
R. Koekoek and R. F. Swarttouw (1998)The Askey-scheme of hypergeometric orthogonal polynomials and its -analogue.
Technical report
Technical Report 98-17, Delft University of Technology,
Faculty of Information Technology and Systems,
Department of Technical Mathematics and Informatics.
R. Koekoek, P. A. Lesky, and R. F. Swarttouw (2010)Hypergeometric Orthogonal Polynomials and Their -Analogues.
Springer Monographs in Mathematics, Springer-Verlag, Berlin.
ⓘ
Notes:
With a foreword by Tom H. Koornwinder.
Based in part on Koekoek and Swarttouw (1998).
W. Koepf (1999)Orthogonal polynomials and computer algebra.
In Recent developments in complex analysis and computer algebra
(Newark, DE, 1997), R. P. Gilbert, J. Kajiwara, and Y. S. Xu (Eds.),
Int. Soc. Anal. Appl. Comput., Vol. 4, Dordrecht, pp. 205–234.
D. A. Kofke (2004)Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)].
J. Chem. Phys.121 (2), pp. 1167.
G. C. Kokkorakis and J. A. Roumeliotis (1998)Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors).
J. Electromagn. Waves Appl.12 (12), pp. 1601–1624.
C. G. Kokologiannaki, P. D. Siafarikas, and C. B. Kouris (1992)On the complex zeros of for real or complex order.
J. Comput. Appl. Math.40 (3), pp. 337–344.
K. S. Kölbig, J. A. Mignaco, and E. Remiddi (1970)On Nielsen’s generalized polylogarithms and their numerical calculation.
Nordisk Tidskr. Informationsbehandling (BIT)10, pp. 38–73.
K. S. Kölbig (1972c)Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument.
Comput. Phys. Comm.4, pp. 221–226.
E. J. Konopinski (1981)Electromagnetic Fields and Relativistic Particles.
International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York.
T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978)Hypergeometric functions of matrix argument are expressible in terms of Appel’s functions .
Proc. Amer. Math. Soc.70 (1), pp. 39–42.
T. H. Koornwinder (1975c)Two-variable Analogues of the Classical Orthogonal Polynomials.
In Theory and Application of Special Functions, R. A. Askey (Ed.),
pp. 435–495.
T. H. Koornwinder (1984a)Jacobi Functions and Analysis on Noncompact Semisimple Lie Groups.
In Special Functions: Group Theoretical Aspects and Applications,
pp. 1–85.
ⓘ
Notes:
Reprinted by Kluwer Academic Publishers, Boston, 2002.
T. H. Koornwinder (1992)Askey-Wilson Polynomials for Root Systems of Type .
In Hypergeometric Functions on Domains of Positivity, Jack
Polynomials, and Applications (Tampa, FL, 1991),
Contemp. Math., Vol. 138, pp. 189–204.
T. H. Koornwinder (1994)Compact quantum groups and -special functions.
In Representations of Lie Groups and Quantum Groups,
Pitman Res. Notes Math. Ser., Vol. 311, pp. 46–128.
ⓘ
Notes:
Sections 3 and 4 also available as arXiv:math/9403216
T. H. Koornwinder (2006)Lowering and Raising Operators for Some Special Orthogonal Polynomials.
In Jack, Hall-Littlewood and Macdonald Polynomials,
Contemp. Math., Vol. 417, pp. 227–238.
T. H. Koornwinder (2007a)The relationship between Zhedanov’s algebra and the double affine Hecke algebra in the rank one case.
SIGMA3, pp. Paper 063, 15 pp..
T. H. Koornwinder (2015)Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators.
SIGMA Symmetry Integrability Geom. Methods Appl.11, pp. Paper 074, 22.
T. Koornwinder, A. Kostenko, and G. Teschl (2018)Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator.
Adv. Math.333, pp. 796–821.
V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993)Quantum Inverse Scattering Method and Correlation Functions.
Cambridge University Press, Cambridge.
C. Kormanyos (2011)Algorithm 910: a portable C++ multiple-precision system for special-function calculations.
ACM Trans. Math. Software37 (4), pp. Art. 45, 27.
ⓘ
Notes:
This system provides a uniform interface in C++, named e_float,
to perform arithmetic operations and to calculate mathematical functions
that are implemented in several different MP packages. It is a free, open-source,
multiple precision package that allows the computation of many special functions.
It supports calculations with 30….300 decimal digits and is
interoperable with Microsoft’s CLR, Python and Mathematica.
C. Krattenthaler (1993)HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively -binomial sums and basic hypergeometric series.
Séminaire Lotharingien de Combinatoire30, pp. 61–76.
ⓘ
Notes:
Also published in J. Symbolic Comput. (1995), v. 20, no. 5–6,
pp. 737–744.
P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998)ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument.
Comput. Phys. Comm.113 (2-3), pp. 220–238.
R. Kress and E. Martensen (1970)Anwendung der Rechteckregel auf die reelle Hilberttransformation mit unendlichem Intervall.
Z. Angew. Math. Mech.50 (1-4), pp. T61–T64 (German).
I. M. Krichever (1976)An algebraic-geometrical construction of the Zakharov-Shabat equations and their periodic solutions.
Sov. Math. Doklady17, pp. 394–397.
I. M. Krichever and S. P. Novikov (1989)Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces.
Funktsional. Anal. i Prilozhen.23 (1), pp. 24–40 (Russian).
ⓘ
Notes:
In Russian. English translation: Funct. Anal. Appl.
23(1989), no. 1, pp. 19–33
T. Kriecherbauer and K. T.-R. McLaughlin (1999)Strong asymptotics of polynomials orthogonal with respect to Freud weights.
Internat. Math. Res. Notices1999 (6), pp. 299–333.
M. D. Kruskal (1974)The Korteweg-de Vries Equation and Related Evolution Equations.
In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson
Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.),
Lectures in Appl. Math., Vol. 15, pp. 61–83.
V. I. Krylov and N. S. Skoblya (1985)A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation.
Mir, Moscow.
ⓘ
Notes:
Translated from the Russian by George Yankovsky. Reprint of the 1977 translation
M. Kurz (1979)Fehlerabschätzungen zu asymptotischen Entwicklungen der Eigenwerte und Eigenlösungen der Mathieuschen Differentialgleichung.
Ph.D. Thesis, Universität Duisburg-Essen, Essen, D 45177.
V. B. Kuznetsov and S. Sahi (Eds.) (2006)Jack, Hall-Littlewood and Macdonald Polynomials.
Contemporary Mathematics, Vol. 417, American Mathematical Society, Providence, RI.
ⓘ
Notes:
Proceedings of the workshop held in Edinburgh, September
23–26, 2003
K. H. Kwon, L. L. Littlejohn, and G. J. Yoon (2006)Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions.
J. Math. Anal. Appl.324 (1), pp. 285–303.