Content-Length: 227039 | pFad | https://dlmf.nist.gov/./.././././bib/.././.././././31.2

DLMF: §31.2 Differential Equations ‣ Properties ‣ Chapter 31 Heun Functions
About the Project
31 Heun FunctionsProperties

§31.2 Differential Equations

Contents
  1. §31.2(i) Heun’s Equation
  2. §31.2(ii) Normal Form of Heun’s Equation
  3. §31.2(iii) Trigonometric Form
  4. §31.2(iv) Doubly-Periodic Forms
  5. §31.2(v) Heun’s Equation Automorphisms

§31.2(i) Heun’s Equation

31.2.1 d2wdz2+(γz+δz1+ϵza)dwdz+αβzqz(z1)(za)w=0,
α+β+1=γ+δ+ϵ.

This equation has regular singularities at 0,1,a,, with corresponding exponents {0,1γ}, {0,1δ}, {0,1ϵ}, {α,β}, respectively (§2.7(i)). All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, {}, can be transformed into (31.2.1).

The parameters play different roles: a is the singularity parameter; α,β,γ,δ,ϵ are exponent parameters; q is the accessory parameter. The total number of free parameters is six.

§31.2(ii) Normal Form of Heun’s Equation

31.2.2 w(z)=zγ/2(z1)δ/2(za)ϵ/2W(z),
31.2.3 d2Wdz2=(Az+Bz1+Cza+Dz2+E(z1)2+F(za)2)W,
A+B+C=0,
31.2.4 A =γδ2γϵ2a+qa,
B =γδ2δϵ2(a1)qαβa1,
C =γϵ2a+δϵ2(a1)aαβqa(a1),
D =12γ(12γ1),
E =12δ(12δ1),
F =12ϵ(12ϵ1).

§31.2(iii) Trigonometric Form

31.2.5 z=sin2θ,
31.2.6 d2wdθ2+((2γ1)cotθ(2δ1)tanθϵsin(2θ)asin2θ)dwdθ+4αβsin2θqasin2θw=0.

§31.2(iv) Doubly-Periodic Forms

Jacobi’s Elliptic Form

With the notation of §22.2 let

31.2.7 a =k2,
z =sn2(ζ,k).

Then (suppressing the parameter k)

31.2.8 d2wdζ2+((2γ1)cnζdnζsnζ(2δ1)snζdnζcnζ(2ϵ1)k2snζcnζdnζ)dwdζ+4k2(αβsn2ζq)w=0.

Weierstrass’s Form

With the notation of §§19.2(ii) and 23.2 let

31.2.9 k2 =(e2e3)/(e1e3),
ζ =iK+ξ(e1e3)1/2,
e1 =(ω1),
e2 =(ω2),
e3 =(ω3),
e1+e2+e3=0,

where 2ω1 and 2ω3 with (ω3/ω1)>0 are generators of the lattice 𝕃 for (z|𝕃). Then

31.2.10 w(ξ)=((ξ)e3)(12γ)/4((ξ)e2)(12δ)/4((ξ)e1)(12ϵ)/4W(ξ),

where W(ξ) satisfies

31.2.11 d2W/dξ2+(H+b0(ξ)+b1(ξ+ω1)+b2(ξ+ω2)+b3(ξ+ω3))W=0,

with

31.2.12 b0 =4αβ(γ+δ+ϵ12)(γ+δ+ϵ32),
b1 =(ϵ12)(ϵ32),
b2 =(δ12)(δ32),
b3 =(γ12)(γ32),
H =e1(γ+δ1)2+e2(γ+ϵ1)2+e3(δ+ϵ1)24αβe34q(e2e3).

§31.2(v) Heun’s Equation Automorphisms

F-Homotopic Transformations

w(z)=z1γw1(z) satisfies (31.2.1) if w1 is a solution of (31.2.1) with transformed parameters q1=q+(aδ+ϵ)(1γ); α1=α+1γ, β1=β+1γ, γ1=2γ. Next, w(z)=(z1)1δw2(z) satisfies (31.2.1) if w2 is a solution of (31.2.1) with transformed parameters q2=q+aγ(1δ); α2=α+1δ, β2=β+1δ, δ2=2δ. Lastly, w(z)=(za)1ϵw3(z) satisfies (31.2.1) if w3 is a solution of (31.2.1) with transformed parameters q3=q+γ(1ϵ); α3=α+1ϵ, β3=β+1ϵ, ϵ3=2ϵ. By composing these three steps, there result 23=8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1).

Homographic Transformations

There are 4!=24 homographies z~(z)=(Az+B)/(Cz+D) that take 0,1,a, to some permutation of 0,1,a,, where a may differ from a. If z~=z~(z) is one of the 3!=6 homographies that map to , then w(z)=w~(z~) satisfies (31.2.1) if w~(z~) is a solution of (31.2.1) with z replaced by z~ and appropriately transformed parameters. For example, if z~=z/a, then the parameters are a~=1/a, q~=q/a; δ~=ϵ, ϵ~=δ. If z~=z~(z) is one of the 4!3!=18 homographies that do not map to , then an appropriate prefactor must be included on the right-hand side. For example, w(z)=(1z)αw~(z/(z1)), which arises from z~=z/(z1), satisfies (31.2.1) if w~(z~) is a solution of (31.2.1) with z replaced by z~ and transformed parameters a~=a/(a1), q~=(qaαγ)/(a1); β~=α+1δ, δ~=α+1β.

Composite Transformations

There are 824=192 automorphisms of equation (31.2.1) by compositions of F-homotopic and homographic transformations. Each is a substitution of dependent and/or independent variables that preserves the form of (31.2.1). Except for the identity automorphism, each alters the parameters.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/.././.././././31.2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy