Content-Length: 193079 | pFad | https://dlmf.nist.gov/./.././././bib/.././25.14#ii.p4

DLMF: §25.14 Lerch’s Transcendent ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions
About the Project
25 Zeta and Related FunctionsRelated Functions

§25.14 Lerch’s Transcendent

Contents
  1. §25.14(i) Definition
  2. §25.14(ii) Properties

§25.14(i) Definition

25.14.1 Φ(z,s,a)n=0zn(a+n)s,
|z|<1; s>1,|z|=1.

If s is not an integer then |pha|<π; if s is a positive integer then a0,1,2,; if s is a non-positive integer then a can be any complex number. For other values of z, Φ(z,s,a) is defined by analytic continuation. This is the notation used in Erdélyi et al. (1953a, p. 27). Lerch (1887) used 𝔎(a,x,s)=Φ(e2πix,s,a).

The Hurwitz zeta function ζ(s,a)25.11) and the polylogarithm Lis(z)25.12(ii)) are special cases:

25.14.2 ζ(s,a)=Φ(1,s,a),
s>1, a0,1,2,,
25.14.3 Lis(z)=zΦ(z,s,1),
s>1, |z|1.
25.14.3_1 zaΦ(z,s,a)=Γ(1s)(lnz)s1+n=0ζ(sn,a)(lnz)nn!,
|lnz|<2π; s1,2,3,, a0,1,2,.

If s=m a positive integer then

25.14.3_2 zaΦ(z,m,a)=n=0ζ(mn,a)(lnz)nn!+(lnz)m1(m1)!(ψ(m)ψ(a)ln(lnz)),
|lnz|<2π; m=2,3,4,, a0,1,2,.

Here the prime signifies that the term for n=m1 is to be omitted. In the case s=1 we have

25.14.3_3 aΦ(z,1,a)=F(a,1;a+1;z),
|z|<1.

For hypergeometric function F see 15.2(i).

§25.14(ii) Properties

With the conditions of (25.14.1) and m=1,2,3,,

25.14.4 Φ(z,s,a)=zmΦ(z,s,a+m)+n=0m1zn(a+n)s.
25.14.5 Φ(z,s,a)=1Γ(s)0xs1eax1zexdx,
s>1, a>0 if z=1; s>0, a>0 if z[1,).
25.14.6 Φ(z,s,a)=12as+0zx(a+x)sdx20sin(xlnzsarctan(x/a))(a2+x2)s/2(e2πx1)dx,
a>0 if |z|<1; s>1, a>0 if |z|=1.

Lerch’s transformation formula

25.14.7 Φ(z,s,a)=i(2π)s1zaΓ(1s)(eπis/2Φ(e2πia,1s,lnz2πi)eπi(2a+(s/2))Φ(e2πia,1s,1lnz2πi)).

For these and further properties see Erdélyi et al. (1953a, pp. 27–31).

25.14.8 Φ(z,s,a)=12πiσiσ+iΓ(1+t)Γ(t)zt(a+t)sdt,
|argz|<π, a>0,

with max(a,1)<σ<0. This Mellin–Barnes integral representation is used in Olde Daalhuis (2024) to obtain large |z| asymptotic approximations for Φ(z,s,a). In the special case s=m an integer these asymptotic approximations simplify

25.14.9 Φ(z,m,a)=πzan=0m1bn(lnz)mn1Γ(mn)n=1(z)n(an)m,
|argz|<π.

The first sum is zero in the case that m is a non-positive integer. In the case that m is a positive integer we have the additional constraint a1,2,3,. The coefficients bn are the Taylor coefficients of csc(π(ta)) about t=0.

The small and large a asymptotics is discussed in Cai and López (2019), Ferreira and López (2004), Paris (2016), and the asymptotics as s is discussed in Navas et al. (2013).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././././bib/.././25.14#ii.p4

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy