Content-Length: 144961 | pFad | https://dlmf.nist.gov/./../././.././././././././.././bib/../././bib/../././33.11#E7

DLMF: §33.11 Asymptotic Expansions for Large 𝜌 ‣ Variables 𝜌,𝜂 ‣ Chapter 33 Coulomb Functions
About the Project
33 Coulomb FunctionsVariables ρ,η

§33.11 Asymptotic Expansions for Large ρ

For large ρ, with and η fixed,

33.11.1 H±(η,ρ)e±iθ(η,ρ)k=0(a)k(b)kk!(±2iρ)k,

where θ(η,ρ) is defined by (33.2.9), and a and b are defined by (33.8.3).

An equivalent formulation is given by

33.11.2 F(η,ρ) =g(η,ρ)cosθ+f(η,ρ)sinθ,
G(η,ρ) =f(η,ρ)cosθg(η,ρ)sinθ,
33.11.3 F(η,ρ) =g^(η,ρ)cosθ+f^(η,ρ)sinθ,
G(η,ρ) =f^(η,ρ)cosθg^(η,ρ)sinθ,
33.11.4 H±(η,ρ)=e±iθ(f(η,ρ)±ig(η,ρ)),

where

33.11.5 f(η,ρ) k=0fk,
g(η,ρ) k=0gk,
33.11.6 f^(η,ρ) k=0f^k,
g^(η,ρ) k=0g^k,
33.11.7 g(η,ρ)f^(η,ρ)f(η,ρ)g^(η,ρ)=1.

Here f0=1, g0=0, f^0=0, g^0=1(η/ρ), and for k=0,1,2,,

33.11.8 fk+1 =λkfkμkgk,
gk+1 =λkgk+μkfk,
f^k+1 =λkf^kμkg^k(fk+1/ρ),
g^k+1 =λkg^k+μkf^k(gk+1/ρ),

where

33.11.9 λk =(2k+1)η(2k+2)ρ,
μk =(+1)k(k+1)+η2(2k+2)ρ.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././.././././././././.././bib/../././bib/../././33.11#E7

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy