Content-Length: 88627 | pFad | https://dlmf.nist.gov/./../././.././17.5#E1

DLMF: §17.5 ₀ϕ₀,₁ϕ₀,₁ϕ₁ Functions ‣ Properties ‣ Chapter 17 𝑞-Hypergeometric and Related Functions
About the Project
17 q-Hypergeometric and Related FunctionsProperties

§17.5 ϕ00,ϕ01,ϕ11 Functions

Euler’s Second Sum

17.5.1 ϕ00(;;q,z)=n=0(1)nq(n2)zn(q;q)n=(z;q);

compare (17.3.2).

q-Binomial Series

17.5.2 ϕ01(a;;q,z)=(az;q)(z;q),
|z|<1;

compare (17.2.37). This equation can be used as the analytic continuation for this ϕ01.

q-Binomial Theorem

Euler’s First Sum

17.5.4 ϕ01(0;;q,z)=n=0zn(q;q)n=1(z;q),
|z|<1;

compare (17.3.1). This equation can be used as the analytic continuation for this ϕ01.

Cauchy’s Sum

17.5.5 ϕ11(ac;q,c/a)=(c/a;q)(c;q).








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././.././17.5#E1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy