Content-Length: 101746 | pFad | https://dlmf.nist.gov/./../././bib/../././././././.././bib/.././././././././.././8.14#p2

DLMF: §8.14 Integrals ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions
About the Project
8 Incomplete Gamma and Related FunctionsIncomplete Gamma Functions

§8.14 Integrals

8.14.1 0eaxγ(b,x)Γ(b)dx=(1+a)ba,
a>0, b>1,
8.14.2 0eaxΓ(b,x)dx=Γ(b)1(1+a)ba,
a>1, b>1.

In (8.14.1) and (8.14.2) limiting values are used when b=0.

8.14.3 0xa1γ(b,x)dx=Γ(a+b)a,
a<0, (a+b)>0,
8.14.4 0xa1Γ(b,x)dx=Γ(a+b)a,
a>0, (a+b)>0,
8.14.5 0xa1esxγ(b,x)dx=Γ(a+b)b(1+s)a+bF(1,a+b;1+b;1/(1+s)),
s>0, (a+b)>0,
8.14.6 0xa1esxΓ(b,x)dx=Γ(a+b)a(1+s)a+bF(1,a+b;1+a;s/(1+s)),
s>1, (a+b)>0, a>0.

For the hypergeometric function F(a,b;c;z) see §15.2(i).

For additional integrals see Apelblat (1983, §8.2), Erdélyi et al. (1953b, §9.3), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2015, §6.45), Marichev (1983, pp.189–190), Oberhettinger (1972, pp. 68–69), Prudnikov et al. (1986b, §§1.2, 2.10), and Prudnikov et al. (1992a, §3.10).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././././././.././bib/.././././././././.././8.14#p2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy