Content-Length: 69226 | pFad | https://dlmf.nist.gov/./../././bib/../././././.././23.12#E2

DLMF: §23.12 Asymptotic Approximations ‣ Weierstrass Elliptic Functions ‣ Chapter 23 Weierstrass Elliptic and Modular Functions
About the Project
23 Weierstrass Elliptic and Modular FunctionsWeierstrass Elliptic Functions

§23.12 Asymptotic Approximations

If q(=eπiω3/ω1)0 with ω1 and z fixed, then

23.12.1 (z)=π24ω12(13+csc2(πz2ω1)+8(1cos(πzω1))q2+O(q4)),
23.12.2 ζ(z)=π24ω12(z3+2ω1πcot(πz2ω1)8(zω1πsin(πzω1))q2+O(q4)),
23.12.3 σ(z)=2ω1πexp(π2z224ω12)sin(πz2ω1)(1(π2z2ω124sin2(πz2ω1))q2+O(q4)),

provided that z𝕃 in the case of (23.12.1) and (23.12.2). Also,

23.12.4 η1=π24ω1(138q2+O(q4)),

with similar results for η2 and η3 obtainable by use of (23.2.14).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././././.././23.12#E2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy