Content-Length: 137041 | pFad | https://dlmf.nist.gov/./../././bib/../././././.././33.11#E2

DLMF: Β§33.11 Asymptotic Expansions for Large 𝜌 β€£ Variables 𝜌,πœ‚ β€£ Chapter 33 Coulomb Functions
About the Project
33 Coulomb FunctionsVariables ρ,η

§33.11 Asymptotic Expansions for Large ρ

For large ρ, with β„“ and Ξ· fixed,

33.11.1 Hℓ±⁑(Ξ·,ρ)∼eΒ±i⁒θℓ⁑(Ξ·,ρ)β’βˆ‘k=0∞(a)k⁒(b)kk!⁒(Β±2⁒i⁒ρ)k,

where θℓ⁑(Ξ·,ρ) is defined by (33.2.9), and a and b are defined by (33.8.3).

An equivalent formulation is given by

33.11.2 Fℓ⁑(Ξ·,ρ) =g⁑(Ξ·,ρ)⁒cos⁑θℓ+f⁑(Ξ·,ρ)⁒sin⁑θℓ,
Gℓ⁑(Ξ·,ρ) =f⁑(Ξ·,ρ)⁒cosβ‘ΞΈβ„“βˆ’g⁑(Ξ·,ρ)⁒sin⁑θℓ,
33.11.3 Fℓ′⁑(Ξ·,ρ) =g^⁑(Ξ·,ρ)⁒cos⁑θℓ+f^⁑(Ξ·,ρ)⁒sin⁑θℓ,
Gℓ′⁑(Ξ·,ρ) =f^⁑(Ξ·,ρ)⁒cosβ‘ΞΈβ„“βˆ’g^⁑(Ξ·,ρ)⁒sin⁑θℓ,
33.11.4 Hℓ±⁑(Ξ·,ρ)=eΒ±i⁒θℓ⁒(f⁑(Ξ·,ρ)Β±i⁒g⁑(Ξ·,ρ)),

where

33.11.5 f⁑(Ξ·,ρ) βˆΌβˆ‘k=0∞fk,
g⁑(Ξ·,ρ) βˆΌβˆ‘k=0∞gk,
33.11.6 f^⁑(Ξ·,ρ) βˆΌβˆ‘k=0∞f^k,
g^⁑(Ξ·,ρ) βˆΌβˆ‘k=0∞g^k,
33.11.7 g⁑(Ξ·,ρ)⁒f^⁑(Ξ·,ρ)βˆ’f⁑(Ξ·,ρ)⁒g^⁑(Ξ·,ρ)=1.

Here f0=1, g0=0, f^0=0, g^0=1βˆ’(Ξ·/ρ), and for k=0,1,2,…,

33.11.8 fk+1 =Ξ»k⁒fkβˆ’ΞΌk⁒gk,
gk+1 =λk⁒gk+μk⁒fk,
f^k+1 =Ξ»k⁒f^kβˆ’ΞΌk⁒g^kβˆ’(fk+1/ρ),
g^k+1 =Ξ»k⁒g^k+ΞΌk⁒f^kβˆ’(gk+1/ρ),

where

33.11.9 λk =(2⁒k+1)⁒η(2⁒k+2)⁒ρ,
ΞΌk =ℓ⁒(β„“+1)βˆ’k⁒(k+1)+Ξ·2(2⁒k+2)⁒ρ.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././././.././33.11#E2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy