Content-Length: 153027 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././../././././././bib/../././bib/../././8.4#E12
DLMF: §8.4 Special Values ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions
§8.4 Special Values
For erf ( z ) , erfc ( z ) , and F ( z ) , see §§7.2(i) ,
7.2(ii) . For E n ( z ) see §8.19(i) .
8.4.1
γ ( 1 2 , z 2 ) = 2 ∫ 0 z e − t 2 d t = π erf ( z ) ,
8.4.2
γ ∗ ( a , 0 )
= 1 Γ ( a + 1 ) ,
8.4.3
γ ∗ ( 1 2 , − z 2 )
= 2 e z 2 z π F ( z ) .
8.4.4
Γ ( 0 , z ) = ∫ z ∞ t − 1 e − t d t = E 1 ( z ) ,
8.4.6
Γ ( 1 2 , z 2 ) = 2 ∫ z ∞ e − t 2 d t = π erfc ( z ) .
For n = 0 , 1 , 2 , … ,
8.4.7
γ ( n + 1 , z )
= n ! ( 1 − e − z e n ( z ) ) ,
8.4.8
Γ ( n + 1 , z )
= n ! e − z e n ( z ) ,
8.4.9
P ( n + 1 , z )
= 1 − e − z e n ( z ) ,
8.4.10
Q ( n + 1 , z )
= e − z e n ( z ) ,
where
Also
8.4.13
Γ ( 1 − n , z ) = z 1 − n E n ( z ) ,
8.4.14
Q ( n + 1 2 , z 2 ) = erfc ( z ) + e − z 2 π ∑ k = 1 n z 2 k − 1 ( 1 2 ) k ,
8.4.15
Γ ( − n , z ) = ( − 1 ) n n ! ( E 1 ( z ) − e − z ∑ k = 0 n − 1 ( − 1 ) k k ! z k + 1 ) = ( − 1 ) n n ! ( ψ ( n + 1 ) − ln z ) − z − n ∑ k = 0 k ≠ n ∞ ( − z ) k k ! ( k − n ) .
--- a PPN by Garber Painting Akron. With Image Size Reduction included! Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././../././././././bib/../././bib/../././8.4#E12
Alternative Proxies:
Alternative Proxy
pFad Proxy
pFad v3 Proxy
pFad v4 Proxy