Content-Length: 245374 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././.././././././../././././.././13.10#vi

DLMF: §13.10 Integrals ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsKummer Functions

§13.10 Integrals

Contents
  1. §13.10(i) Indefinite Integrals
  2. §13.10(ii) Laplace Transforms
  3. §13.10(iii) Mellin Transforms
  4. §13.10(iv) Fourier Transforms
  5. §13.10(v) Hankel Transforms
  6. §13.10(vi) Other Integrals

§13.10(i) Indefinite Integrals

When a1,

13.10.1 𝐌(a,b,z)dz=1a1𝐌(a1,b1,z),
13.10.2 U(a,b,z)dz=1a1U(a1,b1,z).

Other formulas of this kind can be constructed by inversion of the differentiation formulas given in §13.3(ii).

§13.10(ii) Laplace Transforms

For the notation see §§15.1, 15.2(i), and 10.25(ii).

13.10.3 0ezttb1𝐌(a,c,kt)dt=Γ(b)zb𝐅12(a,b;c;k/z),
b>0, z>max(k,0),
13.10.4 0ezttb1𝐌(a,b,t)dt=zb(11z)a,
b>0, z>1,
13.10.5 0ettb1𝐌(a,c,t)dt=Γ(b)Γ(cab)Γ(ca)Γ(cb),
(ca)>b>0,
13.10.6 0eztt2t2b2𝐌(a,b,t2)dt=12π12Γ(b12)U(b12,a+12,14z2),
b>12, z>0,
13.10.7 0ezttb1U(a,c,t)dt=Γ(b)Γ(bc+1)zb𝐅12(a,b;a+bc+1;11z),
b>max(c1,0), z>0.

Loop Integrals

For the particular loop contour, see Figure 5.9.1.

For additional Laplace transforms see Erdélyi et al. (1954a, §§4.22, 5.20), Oberhettinger and Badii (1973, §1.17), and Prudnikov et al. (1992a, §§3.34, 3.35). Inverse Laplace transforms are given in Oberhettinger and Badii (1973, §2.16) and Prudnikov et al. (1992b, §§3.33, 3.34).

§13.10(iii) Mellin Transforms

13.10.10 0tλ1𝐌(a,b,t)dt=Γ(λ)Γ(aλ)Γ(a)Γ(bλ),
0<λ<a,
13.10.11 0tλ1U(a,b,t)dt=Γ(λ)Γ(aλ)Γ(λb+1)Γ(a)Γ(ab+1),
max(b1,0)<λ<a.

For additional Mellin transforms see Erdélyi et al. (1954a, §§6.9, 7.5), Marichev (1983, pp. 283–287), and Oberhettinger (1974, §§1.13, 2.8).

§13.10(iv) Fourier Transforms

For additional Fourier transforms see Erdélyi et al. (1954a, §§1.14, 2.14, 3.3) and Oberhettinger (1990, §§1.22, 2.22).

§13.10(v) Hankel Transforms

For the notation see §10.2(ii).

13.10.13 0ettb112ν𝐌(a,b,t)Jν(2xt)dt=xa+12νex𝐌(νb+1,νa+1,x),
x>0, 2a<ν+52, b>0,
13.10.14 0ett12ν𝐌(a,b,t)Jν(2xt)dt=x12νexΓ(ba)U(a,ab+ν+2,x),
x>0, 1<ν<2(ba)12,
13.10.15 0t12νU(a,b,t)Jν(2xt)dt=Γ(νb+2)Γ(a)x12νU(νb+2,νa+2,x),
x>0, max(b2,1)<ν<2a+12,
13.10.16 0ett12νU(a,b,t)Jν(2xt)dt=Γ(νb+2)x12νex𝐌(a,ab+ν+2,x),
x>0, max(b2,1)<ν.

For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47, 5.94–97).

§13.10(vi) Other Integrals

For integral transforms in terms of Whittaker functions see §13.23(iv). Additional integrals can be found in Apelblat (1983, pp. 388–392), Erdélyi et al. (1954b), Gradshteyn and Ryzhik (2015, §7.6), Magnus et al. (1966, §6.1.2), Prudnikov et al. (1990, §§1.13, 1.14, 2.19, 4.2.2), Prudnikov et al. (1992a, §§3.35, 3.36), and Prudnikov et al. (1992b, §§3.33, 3.34). See also (13.4.2), (13.4.5), (13.4.6).

Generalized orthogonality integrals (33.14.13) and (33.14.15) can be expressed in terms of Kummer functions via the definitions in that section.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././.././././././../././././.././13.10#vi

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy