Content-Length: 178640 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././8.8#p3

DLMF: §8.8 Recurrence Relations and Derivatives ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions
About the Project
8 Incomplete Gamma and Related FunctionsIncomplete Gamma Functions

§8.8 Recurrence Relations and Derivatives

8.8.1 γ(a+1,z)=aγ(a,z)zaez,
8.8.2 Γ(a+1,z)=aΓ(a,z)+zaez.

If w(a,z)=γ(a,z) or Γ(a,z), then

8.8.3 w(a+2,z)(a+1+z)w(a+1,z)+azw(a,z)=0.
8.8.4 zγ(a+1,z)=γ(a,z)ezΓ(a+1).
8.8.5 P(a+1,z)=P(a,z)zaezΓ(a+1),
8.8.6 Q(a+1,z)=Q(a,z)+zaezΓ(a+1).

For n=0,1,2,,

8.8.7 γ(a+n,z)=(a)nγ(a,z)zaezk=0n1Γ(a+n)Γ(a+k+1)zk,
8.8.8 γ(a,z)=Γ(a)Γ(an)γ(an,z)za1ezk=0n1Γ(a)Γ(ak)zk,
8.8.9 Γ(a+n,z)=(a)nΓ(a,z)+zaezk=0n1Γ(a+n)Γ(a+k+1)zk,
8.8.10 Γ(a,z)=Γ(a)Γ(an)Γ(an,z)+za1ezk=0n1Γ(a)Γ(ak)zk,
8.8.11 P(a+n,z)=P(a,z)zaezk=0n1zkΓ(a+k+1),
8.8.12 Q(a+n,z)=Q(a,z)+zaezk=0n1zkΓ(a+k+1).
8.8.13 ddzγ(a,z)=ddzΓ(a,z)=za1ez,
8.8.14 aγ(a,z)|a=0=E1(z)lnz.

For E1(z) see §8.19(i).

For n=0,1,2,,

8.8.15 dndzn(zaγ(a,z))=(1)nzanγ(a+n,z),
8.8.16 dndzn(zaΓ(a,z))=(1)nzanΓ(a+n,z),
8.8.17 dndzn(ezγ(a,z))=(1)n(1a)nezγ(an,z),
8.8.18 dndzn(zaezγ(a,z))=zanezγ(an,z),
8.8.19 dndzn(ezΓ(a,z))=(1)n(1a)nezΓ(an,z).








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././8.8#p3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy