Content-Length: 142266 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././.././././bib/Z#bib2493

DLMF: Bibliography Z ‣ Bibliography
About the Project
Bibliography

Bibliography Z

  • F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996) On the Computation of Zeros of Bessel and Bessel-related Functions. In Proceedings of the Sixth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.), Utrecht, pp. 409–416.
  • M. R. Zaghloul and A. N. Ali (2011) Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Software 38 (2), pp. Art. 15, 22.
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • D. Zagier (1998) A modified Bernoulli number. Nieuw Arch. Wisk. (4) 16 (1-2), pp. 63–72.
  • R. Zanovello (1975) Sul calcolo numerico della funzione di Struve 𝐇ν(z). Rend. Sem. Mat. Univ. e Politec. Torino 32, pp. 251–269 (Italian. English summary).
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • R. Zanovello (1995) Numerical analysis of Struve functions with applications to other special functions. Ann. Numer. Math. 2 (1-4), pp. 199–208.
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • D. Zeilberger and D. M. Bressoud (1985) A proof of Andrews’ q-Dyson conjecture. Discrete Math. 54 (2), pp. 201–224.
  • Zeilberger (website) Doron Zeilberger’s Maple Packages and Programs Department of Mathematics, Rutgers University, New Jersey.
  • A. H. Zemanian (1987) Distribution Theory and Transform Analysis, An Introduction and Generalized Functions with Applications. Dover, New York.
  • J. Zeng (1992) Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1), pp. 1–22.
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • J. Zhang (1996) A note on the τ-method approximations for the Bessel functions Y0(z) and Y1(z). Comput. Math. Appl. 31 (9), pp. 63–70.
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Yn(z) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././.././././bib/Z#bib2493

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy