Content-Length: 407336 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././bib/../././19.3.F4.viz

DLMF: Figure 19.3.4 ‣ §19.3 Graphics ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals
About the Project
19 Elliptic Integrals Legendre’s Integrals 19.3 Graphics
Figure 19.3.4 (See in context.)
Figure 19.3.4: E(ϕ,k) as a function of k2 and sin2ϕ for 1k22, 0sin2ϕ1. If sin2ϕ=1 (k2), then the function reduces to E(k), with value 1 at k2=1. If sin2ϕ=1/k2 (<1), then it has the value kE(1/k)+(k2/k)K(1/k), with limit 1 as k21+: put c=k2 in (19.25.7) and use (19.25.1).
Viewpoint
Scale Figure
Cutting Control








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././bib/../././19.3.F4.viz

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy