Content-Length: 79080 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././bib/.././not/A#n2

DLMF: Notations A ‣ Notations
About the Project
Notations

Notations A

for every; Common Notations and Definitions
A
Glaisher’s constant; (5.17.6)
a k
kth zero of Airy Ai; §9.9(i)
a k
kth zero of Airy Ai; §9.9(i)
A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x )
notation used by Szegő (1967); §9.1
(with Ai(z): Airy function and π: the ratio of the circumference of a circle to its diameter)
A m , s ( q )
q-Euler number; (17.3.8)
a m , s ( q )
q-Stirling number; (17.3.9)
a n ( q )
eigenvalues of Mathieu equation; §28.2(v)
A n ( z )
generalized Airy function; §9.13(i)
A ν ( 𝐓 )
Bessel function of matrix argument (first kind); §35.5(i)
𝐀 ν ( z )
Anger–Weber function; (11.10.4)
a ν n ( k 2 )
eigenvalues of Lamé’s equation; §29.3(i)
A k ( z , p )
generalized Airy function; §9.13(ii)
Ai ( z )
Airy function; §9.2(i)
α
fine structure constant; §18.39(ii)
am ( x , k )
Jacobi’s amplitude function; (22.16.1)
arccd ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arccn ( x , k )
inverse Jacobian elliptic function; §22.15(i)
Arccos z
general arccosine function; (4.23.2)
arccos z
arccosine function; §4.23(ii)
Arccosh z
general inverse hyperbolic cosine function; (4.37.2)
arccosh z
inverse hyperbolic cosine function; §4.37(ii)
Arccot z
general arccotangent function; (4.23.6)
arccot z
arccotangent function; (4.23.9)
Arccoth z
general inverse hyperbolic cotangent function; (4.37.6)
arccoth z
inverse hyperbolic cotangent function; (4.37.9)
arccs ( x , k )
inverse Jacobian elliptic function; §22.15(i)
Arccsc z
general arccosecant function; (4.23.4)
arccsc z
arccosecant function; (4.23.7)
Arccsch z
general inverse hyperbolic cosecant function; (4.37.4)
arccsch z
inverse hyperbolic cosecant function; (4.37.7)
arcdc ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcdn ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcds ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcnc ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcnd ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcns ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcsc ( x , k )
inverse Jacobian elliptic function; §22.15(i)
arcsd ( x , k )
inverse Jacobian elliptic function; §22.15(i)
Arcsec z
general arcsecant function; (4.23.5)
arcsec z
arcsecant function; (4.23.8)
Arcsech z
general inverse hyperbolic secant function; (4.37.5)
arcsech z
inverse hyperbolic secant function; (4.37.8)
Arcsin z
general arcsine function; (4.23.1)
arcsin z
arcsine function; §4.23(ii)
Arcsinh z
general inverse hyperbolic sine function; (4.37.1)
arcsinh z
inverse hyperbolic sine function; §4.37(ii)
arcsn ( x , k )
inverse Jacobian elliptic function; §22.15(i)
Arctan z
general arctangent function; (4.23.3)
arctan z
arctangent function; §4.23(ii)
Arctanh z
general inverse hyperbolic tangent function; (4.37.3)
arctanh z
inverse hyperbolic tangent function; §4.37(ii)








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././bib/../././././bib/.././not/A#n2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy