Content-Length: 137710 | pFad | https://dlmf.nist.gov/./../././bib/.././././../././.././18.6#T1

DLMF: §18.6 Symmetry, Special Values, and Limits to Monomials ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials
About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.6 Symmetry, Special Values, and Limits to Monomials

Contents
  1. §18.6(i) Symmetry and Special Values
  2. §18.6(ii) Limits to Monomials

§18.6(i) Symmetry and Special Values

For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1.

Laguerre

18.6.1 Ln(α)(0)=(α+1)nn!.
Table 18.6.1: Classical OP’s: symmetry and special values.
pn(x) pn(x) pn(1) p2n(0) p2n+1(0)
Pn(α,β)(x) (1)nPn(β,α)(x) (α+1)n/n!
Pn(α,α)(x) (1)nPn(α,α)(x) (α+1)n/n! (14)n(n+α+1)n/n! (14)n(n+α+1)n+1/n!
Cn(λ)(x) (1)nCn(λ)(x) (2λ)n/n! (1)n(λ)n/n! 2(1)n(λ)n+1/n!
Tn(x) (1)nTn(x) 1 (1)n (1)n(2n+1)
Un(x) (1)nUn(x) n+1 (1)n (1)n(2n+2)
Vn(x) (1)nWn(x) 1 (1)n (1)n(2n+2)
Wn(x) (1)nVn(x) 2n+1 (1)n (1)n(2n+2)
Pn(x) (1)nPn(x) 1 (1)n(12)n/n! 2(1)n(12)n+1/n!
Hn(x) (1)nHn(x) (1)n(n+1)n 2(1)n(n+1)n+1
𝐻𝑒n(x) (1)n𝐻𝑒n(x) (12)n(n+1)n (12)n(n+1)n+1

§18.6(ii) Limits to Monomials

18.6.2 limαPn(α,β)(x)Pn(α,β)(1) =(1+x2)n,
18.6.3 limβPn(α,β)(x)Pn(α,β)(1) =(1x2)n,
18.6.4 limλCn(λ)(x)Cn(λ)(1) =xn,
18.6.5 limαLn(α)(αx)Ln(α)(0) =(1x)n.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././../././.././18.6#T1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy