Content-Length: 295480 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././10.75#I2.i5.p1
Comprehensive listings and descriptions of tables of the functions treated in this chapter are provided in Bateman and Archibald (1944), Lebedev and Fedorova (1960), Fletcher et al. (1962), and Luke (1975, §9.13.2). Only a few of the more comprehensive of these early tables are included in the listings in the following subsections. Also, for additional listings of tables pertaining to complex arguments see Babushkina et al. (1997).
British Association for the Advancement of Science (1937) tabulates , , , 10D; , , , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of , for small values of , as well as auxiliary functions to compute all four functions for large values of .
Bickley et al. (1952) tabulates , or , , ( or ) , 8D (for ), 8S (for or ); , , , or , 10D (for ), 10S (for ).
The main tables in Abramowitz and Stegun (1964, Chapter 9) give to 15D, , , , to 10D, to 8D, ; , , , 8D; , , , , 5D or 5S; , , , , 10S; modulus and phase functions , , , , 8D.
Achenbach (1986) tabulates , , , , , 20D or 18–20S.
Zhang and Jin (1996, pp. 185–195) tabulates , , , , , , 5, 10, 25, 50, 100, 9S; , , , , , , , 8S; real and imaginary parts of , , , , , , , , 8S.
British Association for the Advancement of Science (1937) tabulates , , , , , 10D; , , , , , 8D.
Olver (1960) tabulates , , , , , , , , , , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as ; see §10.21(viii), and more fully Olver (1954).
Morgenthaler and Reismann (1963) tabulates for and , 7-10S.
Abramowitz and Stegun (1964, Chapter 9) tabulates , , , , , , 5D (10D for ), , , , , , , 5D (8D for ), , , , 5D. Also included are the first 5 zeros of the functions , , , , for various values of and in the interval , 4–8D.
Abramowitz and Stegun (1964, Chapter 10) tabulates , , , , , , , , , , where ranges from 8 at down to 1 at , 6–7D.
Makinouchi (1966) tabulates all values of and in the interval , with at least 29S. These are for , 10, 20; , ; with and , except for .
Döring (1971) tabulates the first 100 values of for which has the double zero , 10D.
Heller (1976) tabulates , , , , , for , 25D.
Wills et al. (1982) tabulates , , , for , 35D.
Kerimov and Skorokhodov (1985c) tabulates 201 double zeros of , 10 double zeros of , 101 double zeros of , 201 double zeros of , and 10 double zeros of , all to 8 or 9D.
Zhang and Jin (1996, pp. 196–198) tabulates , , , , , , 8D; the first five zeros of , , , , 7D.
Döring (1966) tabulates all zeros of , , , , that lie in the sector , , to 10D. Some of the smaller zeros of and for are also included.
Kerimov and Skorokhodov (1985a) tabulates 5 (nonreal) complex conjugate pairs of zeros of the principal branches of and for , 8D.
Kerimov and Skorokhodov (1985b) tabulates 50 zeros of the principal branches of and , 8D.
Kerimov and Skorokhodov (1987) tabulates 100 complex double zeros of and , 8D.
MacDonald (1989) tabulates the first 30 zeros, in ascending order of absolute value in the fourth quadrant, of the function , 6D. (Other zeros of this function can be obtained by reflection in the imaginary axis).
Zhang and Jin (1996, p. 199) tabulates the real and imaginary parts of the first 15 conjugate pairs of complex zeros of , , and the corresponding values of , , , respectively, 10D.
British Association for the Advancement of Science (1937) tabulates , , , 7–8D; , , , 7–10D; , , , , , 8D. Also included are auxiliary functions to facilitate interpolation of the tables of , for small values of .
Bickley et al. (1952) tabulates or , or , , (.01 or .1) 10(.1) 20, 8S; , , , or , 10S.
The main tables in Abramowitz and Stegun (1964, Chapter 9) give , , , , 8D–10D or 10S; , , , ; , , , 8D; , , , , 5S; , , , , 9–10S.
Achenbach (1986) tabulates , , , , , 19D or 19–21S.
Zhang and Jin (1996, pp. 240–250) tabulates , , , , , , 9S; , , , , , 10, 30, 50, 100, , , , , , , 5, 10, 50, 8S; real and imaginary parts of , , , , , 20(10)50, 100, , , 8S.
Parnes (1972) tabulates all zeros of the principal value of , for , 9D.
Leung and Ghaderpanah (1979), tabulates all zeros of the principal value of , for , 29S.
Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of and , for , 9S.
Kerimov and Skorokhodov (1984c) tabulates all zeros of and in the sector for , 9S.
Kerimov and Skorokhodov (1985b) tabulates all zeros of and in the sector for , 8D.
Abramowitz and Stegun (1964, Chapter 11) tabulates , , , 7D; , , , 6D.
Bickley and Nayler (1935) tabulates (§10.43(iii)) for , 2, 3, 9D.
Zhang and Jin (1996, p. 271) tabulates , , , , , 8D.
Zhang and Jin (1996, pp. 296–305) tabulates , , , , , , , , , 50, 100, , 5, 10, 25, 50, 100, 8S; , , , (Riccati–Bessel functions and their derivatives), , 50, 100, , 5, 10, 25, 50, 100, 8S; real and imaginary parts of , , , , , , , , , 20(10)50, 100, , , 8S. (For the notation replace by , , , , respectively.)
For the notation see §10.58.
Olver (1960) tabulates , , , , , , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as .
Zhang and Jin (1996, p. 323) tabulates the first real zeros of , , , , , , , , 8D.
Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././10.75#I2.i5.p1
Alternative Proxies: