H. A. Yamani and W. P. Reinhardt (1975)-squared discretizations of the continuum: Radial kinetic energy and the Coulomb Hamiltonian.
Phys. Rev. A11 (4), pp. 1144–1156.
Z. M. Yan (1992)Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables.
In Hypergeometric Functions on Domains of Positivity, Jack
Polynomials, and Applications (Tampa, FL, 1991),
Contemporary Mathematics, Vol. 138, pp. 239–259.
K. Yang and M. de Llano (1989)Simple Variational Proof That Any Two-Dimensional Potential Well Supports at Least One Bound State.
American Journal of Physics57 (1), pp. 85–86.
A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1985)The calculation of the Riemann zeta function in the complex domain.
USSR Comput. Math. and Math. Phys.25 (2), pp. 111–119.
A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988)Computation of the derivatives of the Riemann zeta-function in the complex domain.
USSR Comput. Math. and Math. Phys.28 (4), pp. 115–124.
T. Yoshida (1995)Computation of Kummer functions for large argument by using the -method.
Trans. Inform. Process. Soc. Japan36 (10), pp. 2335–2342 (Japanese).
ⓘ
Notes:
Japanese with English summary. Double-precision Fortran.
A. Young and A. Kirk (1964)Bessel Functions. Part IV: Kelvin Functions.
Royal Society Mathematical Tables, Volume 10, Cambridge University Press, Cambridge-New York.
A. P. Yutsis, I. B. Levinson, and V. V. Vanagas (1962)Mathematical Apparatus of the Theory of Angular Momentum.
Israel Program for Scientific Translations for National Science
Foundation and the National Aeronautics and Space Administration, Jerusalem.
ⓘ
Notes:
Translated from the Russian by A. Sen and R. N. Sen