Content-Length: 85161 | pFad | https://dlmf.nist.gov/./../././bib/.././././bib/.././10.29#i.p2

DLMF: §10.29 Recurrence Relations and Derivatives ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
About the Project
10 Bessel FunctionsModified Bessel Functions

§10.29 Recurrence Relations and Derivatives

Contents
  1. §10.29(i) Recurrence Relations
  2. §10.29(ii) Derivatives

§10.29(i) Recurrence Relations

With 𝒵ν(z) defined as in §10.25(ii),

10.29.1 𝒵ν1(z)𝒵ν+1(z) =(2ν/z)𝒵ν(z),
𝒵ν1(z)+𝒵ν+1(z) =2𝒵ν(z).
10.29.2 𝒵ν(z) =𝒵ν1(z)(ν/z)𝒵ν(z),
𝒵ν(z) =𝒵ν+1(z)+(ν/z)𝒵ν(z).
10.29.3 I0(z) =I1(z),
K0(z) =K1(z).

For results on modified quotients of the form z𝒵ν±1(z)/𝒵ν(z) see Onoe (1955) and Onoe (1956).

§10.29(ii) Derivatives

For k=0,1,2,,

10.29.4 (1zddz)k(zν𝒵ν(z)) =zνk𝒵νk(z),
(1zddz)k(zν𝒵ν(z)) =zνk𝒵ν+k(z).
10.29.5 𝒵ν(k)(z)=12k(𝒵νk(z)+(k1)𝒵νk+2(z)+(k2)𝒵νk+4(z)++𝒵ν+k(z)).








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././bib/.././10.29#i.p2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy