Content-Length: 430830 | pFad | https://dlmf.nist.gov/./../././bib/.././././bib/.././11.10#vi.info
The Anger function and Weber function are defined by
11.10.1 | |||
11.10.2 | |||
Each is an entire function of and . Also,
11.10.3 | |||
The Anger and Weber functions satisfy the inhomogeneous Bessel differential equation
11.10.5 | |||
where
11.10.6 | |||
, | |||
or
11.10.7 | |||
. | |||
11.10.8 | |||
11.10.9 | |||
where
11.10.10 | |||
11.10.11 | |||
These expansions converge absolutely for all finite values of .
11.10.12 | ||||
11.10.13 | ||||
11.10.14 | ||||
11.10.15 | |||
11.10.16 | |||
For ,
11.10.22 | |||
and
11.10.23 | |||
where
11.10.24 | ||||
11.10.25 | ||||||
11.10.26 | ||||||
11.10.27 | ||||
11.10.28 | ||||
11.10.29 | |||
. | |||
11.10.30 | |||
11.10.31 | |||
where the prime on the second summation symbols means that the first term is to be halved.
11.10.32 | |||
11.10.33 | |||
11.10.34 | ||||
11.10.35 | ||||
11.10.36 | |||
11.10.37 | |||
For collections of integral representations and integrals see Erdélyi et al. (1954a, §§4.19 and 5.17), Marichev (1983, pp. 194–195 and 214–215), Oberhettinger (1972, p. 128), Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger (1990, pp. 105 and 189–190), Prudnikov et al. (1990, §§1.5 and 2.8), Prudnikov et al. (1992a, §3.18), Prudnikov et al. (1992b, §3.18), and Zanovello (1977).
Fetched URL: https://dlmf.nist.gov/./../././bib/.././././bib/.././11.10#vi.info
Alternative Proxies: