Content-Length: 111964 | pFad | https://dlmf.nist.gov/./../././bib/.././././bib/.././24.8#i.info

DLMF: §24.8 Series Expansions ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials
About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.8 Series Expansions

Contents
  1. §24.8(i) Fourier Series
  2. §24.8(ii) Other Series

§24.8(i) Fourier Series

If n=1,2, and 0x1, then

24.8.1 B2n(x) =(1)n+12(2n)!(2π)2nk=1cos(2πkx)k2n,
24.8.2 B2n+1(x) =(1)n+12(2n+1)!(2π)2n+1k=1sin(2πkx)k2n+1.

The second expansion holds also for n=0 and 0<x<1.

If n=1 with 0<x<1, or n=2,3, with 0x1, then

24.8.3 Bn(x)=n!(2πi)nk=k0e2πikxkn.

If n=1,2, and 0x1, then

24.8.4 E2n(x) =(1)n4(2n)!π2n+1k=0sin((2k+1)πx)(2k+1)2n+1,
24.8.5 E2n1(x) =(1)n4(2n1)!π2nk=0cos((2k+1)πx)(2k+1)2n.

§24.8(ii) Other Series

24.8.6 B4n+2 =(8n+4)k=1k4n+1e2πk1,
n=1,2,,
24.8.7 B2n =(1)n+14n22n1k=1k2n1eπk+(1)k+n,
n=2,3,.

Let αβ=π2. Then

24.8.8 B2n4n(αn(β)n)=αnk=1k2n1e2αk1(β)nk=1k2n1e2βk1,
n=2,3,.
24.8.9 E2n=(1)nk=1k2ncosh(12πk)4k=0(1)k(2k+1)2ne2π(2k+1)1,
n=1,2,.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././bib/.././24.8#i.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy