Content-Length: 92097 | pFad | https://dlmf.nist.gov/./../././bib/.././././bib/.././28.35#iv.p1

DLMF: §28.35 Tables ‣ Computation ‣ Chapter 28 Mathieu Functions and Hill’s Equation
About the Project
28 Mathieu Functions and Hill’s EquationComputation

§28.35 Tables

Contents
  1. §28.35(i) Real Variables
  2. §28.35(ii) Complex Variables
  3. §28.35(iii) Zeros
  4. §28.35(iv) Further Tables

§28.35(i) Real Variables

  • Blanch and Clemm (1962) includes values of Mcn(1)(x,q) and Mcn(1)(x,q) for n=0(1)15 with q=0(.05)1, x=0(.02)1. Also Msn(1)(x,q) and Msn(1)(x,q) for n=1(1)15 with q=0(.05)1, x=0(.02)1. Precision is generally 7D.

  • Blanch and Clemm (1965) includes values of Mcn(2)(x,q), Mcn(2)(x,q) for n=0(1)7, x=0(.02)1; n=8(1)15, x=0(.01)1. Also Msn(2)(x,q), Msn(2)(x,q) for n=1(1)7, x=0(.02)1; n=8(1)15, x=0(.01)1. In all cases q=0(.05)1. Precision is generally 7D. Approximate formulas and graphs are also included.

  • Blanch and Rhodes (1955) includes 𝐵𝑒n(t), 𝐵𝑜n(t), t=12q, n=0(1)15; 8D. The range of t is 0 to 0.1, with step sizes ranging from 0.002 down to 0.00025. Notation: 𝐵𝑒n(t)=an(q)+2q(4n+2)q, 𝐵𝑜n(t)=bn(q)+2q(4n2)q.

  • Ince (1932) includes eigenvalues an, bn, and Fourier coefficients for n=0 or 1(1)6, q=0(1)10(2)20(4)40; 7D. Also cen(x,q), sen(x,q) for q=0(1)10, x=1(1)90, corresponding to the eigenvalues in the tables; 5D. Notation: an=𝑏𝑒n2q, bn=𝑏𝑜n2q.

  • Kirkpatrick (1960) contains tables of the modified functions Cen(x,q), Sen+1(x,q) for n=0(1)5, q=1(1)20, x=0.1(.1)1; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues an(q), bn(q) for n=0(1)3 with q=0(.2)20(.5)37(1)100, and n=4(1)15 with q=0(2)100; Fourier coefficients for cen(x,q) and sen(x,q) for n=0(1)15, n=1(1)15, respectively, and various values of q in the interval [0,100]; joining factors ge,n(q), fe,n(q) for n=0(1)15 with q=0(.5 to 10)100 (but in a different notation). Also, eigenvalues for large values of q. Precision is generally 8D.

  • Stratton et al. (1941) includes bn, bn, and the corresponding Fourier coefficients for Sen(c,x) and Son(c,x) for n=0 or 1(1)4, c=0(.1or.2)4.5. Precision is mostly 5S. Notation: c=2q, bn=an+2q, bn=bn+2q, and for Sen(c,x), Son(c,x) see §28.1.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues an(q), bn+1(q) for n=0(1)4, q=0(1)50; n=0(1)20 (a’s) or 19 (b’s), q=1,3,5,10,15,25,50(50)200. Fourier coefficients for cen(x,10), sen+1(x,10), n=0(1)7. Mathieu functions cen(x,10), sen+1(x,10), and their first x-derivatives for n=0(1)4, x=0(5)90. Modified Mathieu functions Mcn(j)(x,10), Msn+1(j)(x,10), and their first x-derivatives for n=0(1)4, j=1,2, x=0(.2)4. Precision is mostly 9S.

§28.35(ii) Complex Variables

  • Blanch and Clemm (1969) includes eigenvalues an(q), bn(q) for q=ρeiϕ, ρ=0(.5)25, ϕ=5(5)90, n=0(1)15; 4D. Also an(q) and bn(q) for q=iρ, ρ=0(.5)100, n=0(2)14 and n=2(2)16, respectively; 8D. Double points for n=0(1)15; 8D. Graphs are included.

§28.35(iii) Zeros

  • Blanch and Clemm (1965) includes the first and second zeros of Mcn(2)(x,q), Mcn(2)(x,q) for n=0,1, and Msn(2)(x,q), Msn(2)(x,q) for n=1,2, with q=0(.05)1; 7D.

  • Ince (1932) includes the first zero for cen, sen for n=2(1)5 or 6, q=0(1)10(2)40; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q.

  • Zhang and Jin (1996, pp. 533–535) includes the zeros (in degrees) of cen(x,10), sen(x,10) for n=1(1)10, and the first 5 zeros of Mcn(j)(x,10), Msn(j)(x,10) for n=0 or 1(1)8, j=1,2. Precision is mostly 9S.

§28.35(iv) Further Tables

For other tables prior to 1961 see Fletcher et al. (1962, §2.2) and Lebedev and Fedorova (1960, Chapter 11).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././bib/.././28.35#iv.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy