Content-Length: 134757 | pFad | https://dlmf.nist.gov/./../././bib/.././././bib/.././7.19#i.p1

DLMF: §7.19 Voigt Functions ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
About the Project
7 Error Functions, Dawson’s and Fresnel IntegralsProperties

§7.19 Voigt Functions

Contents
  1. §7.19(i) Definitions
  2. §7.19(ii) Graphics
  3. §7.19(iii) Properties
  4. §7.19(iv) Other Integral Representations

§7.19(i) Definitions

For x and t>0,

7.19.1 𝖴(x,t)=14πte(xy)2/(4t)1+y2dy,
7.19.2 𝖵(x,t)=14πtye(xy)2/(4t)1+y2dy.
7.19.3 𝖴(x,t)+i𝖵(x,t)=π4tez2erfcz,
z=(1ix)/(2t).
7.19.4 H(a,u)=aπet2dt(ut)2+a2=1aπ𝖴(ua,14a2).

H(a,u) is sometimes called the line broadening function; see, for example, Finn and Mugglestone (1965).

§7.19(ii) Graphics

See accompanying text
Figure 7.19.1: Voigt function 𝖴(x,t), t=0.1, 2.5, 5, 10. Magnify
See accompanying text
Figure 7.19.2: Voigt function 𝖵(x,t), t=0.1, 2.5, 5, 10. Magnify

§7.19(iii) Properties

7.19.5 limt0𝖴(x,t) =11+x2,
limt0𝖵(x,t) =x1+x2.
7.19.6 𝖴(x,t) =𝖴(x,t),
𝖵(x,t) =𝖵(x,t).
7.19.7 0 <𝖴(x,t)1,
1 𝖵(x,t)1.
7.19.8 𝖵(x,t) =x𝖴(x,t)+2t𝖴(x,t)x,
7.19.9 𝖴(x,t) =1x𝖵(x,t)2t𝖵(x,t)x.

§7.19(iv) Other Integral Representations

7.19.10 𝖴(ua,14a2)=a0eat14t2cos(ut)dt,
7.19.11 𝖵(ua,14a2)=a0eat14t2sin(ut)dt.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././bib/.././7.19#i.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy