Content-Length: 45490 | pFad | https://dlmf.nist.gov/./../././bib/../././.././././././bib/../././5.22#info

DLMF: §5.22 Tables ‣ Computation ‣ Chapter 5 Gamma Function
About the Project
5 Gamma FunctionComputation

§5.22 Tables

Contents
  1. §5.22(i) Introduction
  2. §5.22(ii) Real Variables
  3. §5.22(iii) Complex Variables

§5.22(i) Introduction

For early tables for both real and complex variables see Fletcher et al. (1962), Lebedev and Fedorova (1960), and Luke (1975, p. 21).

§5.22(ii) Real Variables

Abramowitz and Stegun (1964, Chapter 6) tabulates Γ(x), lnΓ(x), ψ(x), and ψ(x) for x=1(.005)2 to 10D; ψ′′(x) and ψ(3)(x) for x=1(.01)2 to 10D; Γ(n), 1/Γ(n), Γ(n+12), ψ(n), log10Γ(n), log10Γ(n+13), log10Γ(n+12), and log10Γ(n+23) for n=1(1)101 to 8–11S; Γ(n+1) for n=100(100)1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ(x), 1/Γ(x), Γ(x), lnΓ(x), ψ(x), ψ(x), ψ(x), and ψ(x) for x=0(.1)5 to 8D or 8S; Γ(n+1) for n=0(1)100(10)250(50)500(100)3000 to 51S.

§5.22(iii) Complex Variables

Abramov (1960) tabulates lnΓ(x+iy) for x=1 (.01) 2, y=0 (.01) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates lnΓ(x+iy) for x=1 (.1) 2, y=0 (.1) 10 to 12D. This reference also includes ψ(x+iy) for the same arguments to 5D. Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ(x+iy), lnΓ(x+iy), and ψ(x+iy) for x=0.5,1,5,10, y=0(.5)10 to 8S.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././.././././././bib/../././5.22#info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy