Content-Length: 89036 | pFad | https://dlmf.nist.gov/./../././bib/../././../././bib/../././23.17.E6

6000 DLMF: §23.17 Elementary Properties ‣ Modular Functions ‣ Chapter 23 Weierstrass Elliptic and Modular Functions
About the Project
23 Weierstrass Elliptic and Modular FunctionsModular Functions

§23.17 Elementary Properties

Contents
  1. §23.17(i) Special Values
  2. §23.17(ii) Power and Laurent Series
  3. §23.17(iii) Infinite Products

§23.17(i) Special Values

23.17.1 λ(i) =12,
λ(eπi/3) =eπi/3,
23.17.2 J(i) =1,
J(eπi/3) =0,
23.17.3 η(i) =Γ(14)2π3/4,
η(eπi/3) =31/8(Γ(13))3/22πeπi/24.

For further results for J(τ) see Cohen (1993, p. 376).

§23.17(ii) Power and Laurent Series

When |q|<1

23.17.4 λ(τ)=16q(18q+44q2+),
23.17.5 1728J(τ)=q2+744+1 96884q2+214 93760q4+,
23.17.6 η(τ)=n=(1)nq(6n+1)2/12.

In (23.17.5) for terms up to q48 see Zuckerman (1939), and for terms up to q100 see van Wijngaarden (1953). See also Apostol (1990, p. 22).

§23.17(iii) Infinite Products

23.17.7 λ(τ)=16qn=1(1+q2n1+q2n1)8,
23.17.8 η(τ)=q1/12n=1(1q2n),

with q1/12=eiπτ/12.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././../././bib/../././23.17.E6

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy