Content-Length: 113472 | pFad | https://dlmf.nist.gov/./../././bib/../././bib/.././././././././bib/.././10.44#iv.p1

DLMF: §10.44 Sums ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
About the Project
10 Bessel FunctionsModified Bessel Functions

§10.44 Sums

Contents
  1. §10.44(i) Multiplication Theorem
  2. §10.44(ii) Addition Theorems
  3. §10.44(iii) Neumann-Type Expansions
  4. §10.44(iv) Compendia

§10.44(i) Multiplication Theorem

10.44.1 𝒵ν(λz)=λ±νk=0(λ21)k(12z)kk!𝒵ν±k(z),
|λ21|<1.

If 𝒵=I and the upper signs are taken, then the restriction on λ is unnecessary.

Examples

10.44.2 Iν(z) =k=0zkk!Jν+k(z),
Jν(z) =k=0(1)kzkk!Iν+k(z).

§10.44(ii) Addition Theorems

Neumann’s Addition Theorem

10.44.3 𝒵ν(u±v)=k=(±1)k𝒵ν+k(u)Ik(v),
|v|<|u|.

The restriction |v|<|u| is unnecessary when 𝒵=I and ν is an integer.

Graf’s and Gegenbauer’s Addition Theorems

For results analogous to (10.23.7) and (10.23.8) see Watson (1944, §§11.3 and 11.41).

§10.44(iii) Neumann-Type Expansions

10.44.4 (12z)ν=k=0(1)k(ν+2k)Γ(ν+k)k!Iν+2k(z),
ν0,1,2,.
10.44.5 K0(z)=(ln(12z)+γ)I0(z)+2k=1I2k(z)k,
10.44.6 Kn(z)=n!(12z)n2k=0n1(1)k(12z)kIk(z)k!(nk)+(1)n1(ln(12z)ψ(n+1))In(z)+(1)nk=1(n+2k)In+2k(z)k(n+k),

where γ is Euler’s constant and ψ=Γ/Γ5.2).

§10.44(iv) Compendia

For collections of sums and series involving modified Bessel functions see Erdélyi et al. (1953b, §7.15), Hansen (1975), and Prudnikov et al. (1986b, pp. 691–700).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././bib/.././././././././bib/.././10.44#iv.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy