Content-Length: 90935 | pFad | https://dlmf.nist.gov/./../././bib/../././bib/.././../././27.3

DLMF: §27.3 Multiplicative Properties ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory
About the Project
27 Functions of Number TheoryMultiplicative Number Theory

§27.3 Multiplicative Properties

Except for ν(n), Λ(n), pn, and π(x), the functions in §27.2 are multiplicative, which means f(1)=1 and

27.3.1 f(mn)=f(m)f(n),
(m,n)=1.

If f is multiplicative, then the values f(n) for n>1 are determined by the values at the prime powers. Specifically, if n is factored as in (27.2.1), then

27.3.2 f(n)=r=1ν(n)f(prar).

In particular,

27.3.3 ϕ(n) =np|n(1p1),
27.3.4 Jk(n) =nkp|n(1pk),
27.3.5 d(n) =r=1ν(n)(1+ar),
27.3.6 σα(n) =r=1ν(n)prα(1+ar)1prα1,
α0.

Related multiplicative properties are

27.3.7 σα(m)σα(n)=d|(m,n)dασα(mnd2),
27.3.8 ϕ(m)ϕ(n)=ϕ(mn)ϕ((m,n))/(m,n).

A function f is completely multiplicative if f(1)=1 and

27.3.9 f(mn)=f(m)f(n),
m,n=1,2,.

Examples are 1/n and λ(n), and the Dirichlet characters, defined in §27.8.

If f is completely multiplicative, then (27.3.2) becomes

27.3.10 f(n)=r=1ν(n)(f(pr))ar.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././bib/.././../././27.3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy