Content-Length: 33786 | pFad | https://dlmf.nist.gov/./../././bib/../././bib/.././13.30#I1.i4.p1

DLMF: §13.30 Tables ‣ Computation ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsComputation

§13.30 Tables

  • Žurina and Osipova (1964) tabulates M(a,b,x) and U(a,b,x) for b=2, a=0.98(.02)1.10, x=0(.01)4, 7D or 7S.

  • Slater (1960) tabulates M(a,b,x) for a=1(.1)1, b=0.1(.1)1, and x=0.1(.1)10, 7–9S; M(a,b,1) for a=11(.2)2 and b=4(.2)1, 7D; the smallest positive x-zero of M(a,b,x) for a=4(.1)0.1 and b=0.1(.1)2.5, 7D.

  • Abramowitz and Stegun (1964, Chapter 13) tabulates M(a,b,x) for a=1(.1)1, b=0.1(.1)1, and x=0.1(.1)1(1)10, 8S. Also the smallest positive x-zero of M(a,b,x) for a=1(.1)0.1 and b=0.1(.1)1, 7D.

  • Zhang and Jin (1996, pp. 411–423) tabulates M(a,b,x) and U(a,b,x) for a=5(.5)5, b=0.5(.5)5, and x=0.1,1,5,10,20,30, 8S (for M(a,b,x)) and 7S (for U(a,b,x)).

For other tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/../././bib/.././13.30#I1.i4.p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy