Content-Length: 403291 | pFad | https://dlmf.nist.gov/./../././bib/../././bib/.././26.8#v.info
denotes the Stirling number of the first kind: times the number of permutations of with exactly cycles. See Table 26.8.1.
26.8.1 | ||||
, | ||||
26.8.2 | ||||
26.8.3 | |||
. | |||
denotes the Stirling number of the second kind: the number of partitions of into exactly nonempty subsets. See Table 26.8.2.
26.8.4 | |||
, | |||
26.8.5 | |||
where the summation is over all nonnegative integers such that
26.8.6 | |||
0 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | |||||||||||
2 | |||||||||||
3 | |||||||||||
4 | |||||||||||
5 | |||||||||||
6 | |||||||||||
7 | |||||||||||
8 | |||||||||||
9 | |||||||||||
10 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | ||||||||||
1 | 0 | 1 | |||||||||
2 | 0 | 1 | 1 | ||||||||
3 | 0 | 1 | 3 | 1 | |||||||
4 | 0 | 1 | 7 | 6 | 1 | ||||||
5 | 0 | 1 | 15 | 25 | 10 | 1 | |||||
6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | ||||
7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | |||
8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | ||
9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 | |
10 | 0 | 1 | 511 | 9330 | 34105 | 42525 | 22827 | 5880 | 750 | 45 | 1 |
26.8.7 | |||
where is the Pochhammer symbol: .
26.8.8 | |||
, | |||
26.8.9 | |||
. | |||
26.8.10 | |||
26.8.11 | |||
, | |||
26.8.12 | |||
26.8.13 | |||
For ,
26.8.14 | ||||
26.8.15 | |||
26.8.16 | |||
26.8.17 | ||||
26.8.18 | |||
26.8.19 | |||
, | |||
26.8.20 | |||
26.8.21 | |||
26.8.22 | |||
26.8.23 | |||
, | |||
26.8.24 | |||
26.8.25 | |||
26.8.26 | |||
26.8.27 | |||
26.8.28 | |||
, | |||
26.8.29 | |||
26.8.30 | |||
26.8.31 | |||
when is analytic for all , and the series converges, where
26.8.32 | |||
see also §3.6(i).
26.8.33 | |||
26.8.34 | |||
26.8.35 | |||
26.8.36 | |||
26.8.37 | |||
when is analytic for all , and the series converges.
Let and be the matrices with th elements , and , respectively. Then
26.8.38 | |||
26.8.39 | |||
See §24.15(iii).
26.8.40 | |||
, | |||
uniformly for , where is Euler’s constant (§5.2(ii)).
26.8.41 | |||
, | |||
fixed.
26.8.42 | |||
, | |||
fixed.
26.8.43 | |||
, | |||
uniformly for .
For asymptotic approximations for and that apply uniformly for as see Temme (1993) and Temme (2015, Chapter 34).
For other asymptotic approximations and also expansions see Moser and Wyman (1958a) for Stirling numbers of the first kind, and Moser and Wyman (1958b), Bleick and Wang (1974) for Stirling numbers of the second kind.
For asymptotic estimates for generalized Stirling numbers see Chelluri et al. (2000).
Fetched URL: https://dlmf.nist.gov/./../././bib/../././bib/.././26.8#v.info
Alternative Proxies: