Content-Length: 352683 | pFad | https://dlmf.nist.gov/./../././bib/.././../././.././idx/P
DLMF: Index P ‣ Index
Index P
-
-function, see Weierstrass elliptic functions.
-
packing analysis
-
Padé approximations
§3.11(iv)—§3.11(iv)
-
Painlevé equations §32.2(i), see also Painlevé transcendents.
-
Painlevé property
§32.2(i)
-
Painlevé transcendents §32.2(i), see also Painlevé equations.
-
parabolic cylinder functions §12.1, §12.14
-
addition theorems
§12.13(i)
-
applications
-
approximations
§12.20
-
asymptotic expansions for large parameter, see uniform asymptotic expansions for large parameter.
-
asymptotic expansions for large variable §12.14(viii), §12.9
-
computation
§12.18
-
connection formulas §12.14(iv), §12.2(v)
-
continued fraction
§12.6
-
definitions §12.14, §12.2(i), §12.2(vi)
-
derivatives
§12.8(ii)
-
differential equations
§12.2
-
envelope functions
§14.15(v)
-
expansions in Chebyshev series
§12.20
-
generalized
§12.15
-
graphics
-
Hermite polynomial case §12.1, §12.7(i)
-
integral representations
-
integral transforms
§12.16
-
integrals
§12.12—§12.12
-
modulus and phase functions §12.14(x), §12.2(vi)
-
notation
§12.1
-
orthogonality
§12.16
-
power-series expansions §12.14(v), §12.4
-
recurrence relations
§12.8(i)
-
reflection formulas
§12.2(iv)
-
relations to other functions
-
sums
§12.13
-
tables
§12.19
-
uniform asymptotic expansions for large parameter §12.10—§12.10(viii), §12.14(ix)—§12.14(ix)
-
values at §12.14(ii), §12.2(ii)
-
Wronskians §12.14(ii), §12.2(iii)
-
zeros
-
paraboloidal coordinates
-
paraboloidal wave functions
§28.31(iii)
-
parallelepiped
-
parallelogram
-
parametrization of algebraic equations
-
parametrized surfaces
-
paraxial wave equation
§36.10(iv)
-
Parseval-type formulas
-
Parseval’s equality
-
Parseval’s Formula
-
Parseval’s formula
-
partial derivative
§1.5(i)
-
partial differential equations
-
nonlinear
-
Painlevé transcendents
§32.13
-
partial differentiation
§1.5(i)
-
partial fractions §1.2(iii), see also infinite partial fractions.
-
particle scattering
-
partition, see partition function.
-
partition function
-
partitional shifted factorial
§35.4(i)
-
partitions §26.12(iv), §26.2—§26.4(i), §26.8—§35.4(i)
-
path
-
integrals of vector-valued functions
§1.6(iv)
-
PCFs, see parabolic cylinder functions.
-
Pearcey integral
§36.2(ii)
-
pendulum
-
pentagonal numbers
-
periodic Bernoulli functions
§24.2(iii)
-
periodic Euler functions
§24.2(iii)
-
periodic zeta function
-
relation to Hurwitz zeta function
§25.13
-
relation to polylogarithms
§25.13
-
permutations §26.13—§26.16, §26.2
-
Pfaff–Saalschütz formula
-
phase principle §1.10(iv), §3.8(v)
-
photon scattering
-
hypergeometric function
§15.18
-
pi
-
computation to high precision via elliptic integrals
§19.35(i)
-
Picard–Fuchs equations
-
generalized hypergeometric functions
§16.23(i)
-
Picard’s theorem
§1.10(iii)
-
piecewise continuous
§1.4(ii)
-
piecewise differentiable curve
§1.6(iv)
-
pion-nucleon scattering
-
pionic atoms
-
Planck’s radiation function
§4.44
-
plane algebraic curves, see algebraic curves.
-
plane curves
-
plane partitions
-
plane polar coordinates, see polar coordinates.
-
plasma dispersion function
§7.21
-
plasma waves
-
plasmas
-
hypergeometric function
§15.18
-
Pochhammer double-loop contour Figure 13.4.1, Figure 13.4.1, Figure 13.4.1, Figure 15.6.1, Figure 15.6.1, Figure 15.6.1, §31.9(i)
-
Pochhammer’s integral
-
point sets in complex plane
-
points in complex plane
-
Poisson identity
-
Poisson integral §1.15(v), §1.9(iii)
-
Poisson kernel §1.15(iii), §18.2(xii)
-
Poisson’s equation
-
Poisson’s integral
-
Poisson’s summation formula
-
polar coordinates
§1.5(ii)
-
polar representation
-
pole
§1.10(iii)
-
Pollaczek polynomials
§18.35
-
polygamma functions
§5.15
-
polylogarithms
§25.12(ii)
-
polynomials
-
polynomials orthogonal on the unit circle
§18.33—§18.33
-
population biology
-
poristic polygon constructions of Poncelet
-
positive definite
-
potential theory
-
power function
§4.2(iv)
-
power series
-
primality testing
-
primes, see prime numbers.
-
primitive Dirichlet characters
-
relation to generalized Bernoulli polynomials
§24.16(ii)
-
principal branches, see principal values.
-
principal values §4.2(i), see also Cauchy principal values.
-
principle of the argument, see phase principle.
-
Pringsheim’s theorem for continued fractions
§1.12(v)
-
probability distribution
-
symmetric elliptic integrals
§19.31
-
probability functions §12.7(ii), §7.1, §7.18(iv)
-
Gaussian
§7.1
-
normal
§7.1
-
relations to other functions
-
problème des ménages
§26.15
-
projective coordinates
§23.20(ii)
-
projective quantum numbers
-
prolate spheroidal coordinates
§30.13(i)
-
Prym’s functions
§8.1
-
pseudo-spectral methods
-
numerical solution of differential
equations
§18.38(i)
-
pseudo-spectral representations
-
via classical orthogonal polynomials
§18.38(i)
-
via non-classical orthogonal polynomials
§18.38(i)
-
pseudo-spectral theory and representations
-
pseudoperiodic solutions
-
pseudoprime test
§27.12
-
pseudorandom numbers
§27.19
-
psi function
§5.2(i)
-
public key codes
§27.16
-
punctured neighborhood
§1.10(iii)
--- a PPN by Garber Painting Akron. With Image Size Reduction included!Fetched URL: https://dlmf.nist.gov/./../././bib/.././../././.././idx/P
Alternative Proxies:
Alternative Proxy
pFad Proxy
pFad v3 Proxy
pFad v4 Proxy