Content-Length: 41545 | pFad | https://dlmf.nist.gov/./../././bib/.././15.14#p4

DLMF: §15.14 Integrals ‣ Properties ‣ Chapter 15 Hypergeometric Function
About the Project
15 Hypergeometric FunctionProperties

§15.14 Integrals

The Mellin transform of the hypergeometric function of negative argument is given by

15.14.1 0xs1𝐅(a,bc;x)dx=Γ(s)Γ(as)Γ(bs)Γ(a)Γ(b)Γ(cs),
min(a,b)>s>0.

Integrals of the form xα(x+t)βF(a,b;c;x)dx and more complicated forms are given in Apelblat (1983, pp. 370–387), Prudnikov et al. (1990, §§1.15 and 2.21), Gradshteyn and Ryzhik (2015, §7.5) and Koornwinder (2015).

Fourier transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §§1.14 and 2.14). Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §4.21), Oberhettinger and Badii (1973, §1.19), and Prudnikov et al. (1992a, §3.37). Inverse Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §5.19), Oberhettinger and Badii (1973, §2.18), and Prudnikov et al. (1992b, §3.35). Mellin transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §6.9), Oberhettinger (1974, §1.15), and Marichev (1983, pp. 288–299). Inverse Mellin transforms are given in Erdélyi et al. (1954a, §7.5). Hankel transforms of hypergeometric functions are given in Oberhettinger (1972, §1.17) and Erdélyi et al. (1954b, §8.17).

For other integral transforms see Erdélyi et al. (1954b), Prudnikov et al. (1992b, §4.3.43), and also §15.9(ii).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././15.14#p4

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy