Content-Length: 242008 | pFad | https://dlmf.nist.gov/./../././bib/.././bib/.././13.15#ii.info

DLMF: §13.15 Recurrence Relations and Derivatives ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsWhittaker Functions

§13.15 Recurrence Relations and Derivatives

Contents
  1. §13.15(i) Recurrence Relations
  2. §13.15(ii) Differentiation Formulas

§13.15(i) Recurrence Relations

13.15.1 (κμ12)Mκ1,μ(z)+(z2κ)Mκ,μ(z)+(κ+μ+12)Mκ+1,μ(z) =0,
13.15.2 2μ(1+2μ)zMκ12,μ12(z)(z+2μ)(1+2μ)Mκ,μ(z)+(κ+μ+12)zMκ+12,μ+12(z) =0,
13.15.3 (κμ12)Mκ12,μ+12(z)+(1+2μ)zMκ,μ(z)(κ+μ+12)Mκ+12,μ+12(z) =0,
13.15.4 2μMκ12,μ12(z)2μMκ+12,μ12(z)zMκ,μ(z) =0,
13.15.5 2μ(1+2μ)Mκ,μ(z)2μ(1+2μ)zMκ12,μ12(z)(κμ12)zMκ12,μ+12(z) =0,
13.15.6 2μ(1+2μ)zMκ+12,μ12(z)+(z2μ)(1+2μ)Mκ,μ(z)+(κμ12)zMκ12,μ+12(z) =0,
13.15.7 2μ(1+2μ)zMκ+12,μ12(z)2μ(1+2μ)Mκ,μ(z)+(κ+μ+12)zMκ+12,μ+12(z) =0.
13.15.8 Wκ+12,μ+12(z)zWκ,μ(z)+(κμ12)Wκ12,μ+12(z) =0,
13.15.9 Wκ+12,μ12(z)zWκ,μ(z)+(κ+μ12)Wκ12,μ12(z) =0,
13.15.10 2μWκ,μ(z)zWκ+12,μ+12(z)+zWκ+12,μ12(z) =0,
13.15.11 Wκ+1,μ(z)+(2κz)Wκ,μ(z)+(κμ12)(κ+μ12)Wκ1,μ(z) =0,
13.15.12 (κμ12)zWκ12,μ+12(z)+2μWκ,μ(z)(κ+μ12)zWκ12,μ12(z) =0,
13.15.13 (κ+μ12)zWκ12,μ12(z)(z+2μ)Wκ,μ(z)+zWκ+12,μ+12(z) =0,
13.15.14 (κμ12)zWκ12,μ+12(z)(z2μ)Wκ,μ(z)+zWκ+12,μ12(z) =0.

§13.15(ii) Differentiation Formulas

13.15.15 dndzn(e12zzμ12Mκ,μ(z)) =(1)n(2μ)ne12zzμ12(n+1)Mκ12n,μ12n(z),
13.15.16 dndzn(e12zzμ12Mκ,μ(z)) =(12+μκ)n(1+2μ)ne12zzμ12(n+1)Mκ12n,μ+12n(z),
13.15.17 (zddzz)n(e12zzκ1Mκ,μ(z)) =(12+μκ)ne12zznκ1Mκn,μ(z),
13.15.18 dndzn(e12zzμ12Mκ,μ(z)) =(1)n(2μ)ne12zzμ12(n+1)Mκ+12n,μ12n(z),
13.15.19 dndzn(e12zzμ12Mκ,μ(z)) =(1)n(12+μ+κ)n(1+2μ)ne12zzμ12(n+1)Mκ+12n,μ+12n(z),
13.15.20 (zddzz)n(e12zzκ1Mκ,μ(z)) =(12+μ+κ)ne12zzκ+n1Mκ+n,μ(z).
13.15.21 dndzn(e12zzμ12Wκ,μ(z)) =(1)n(12+μκ)ne12zzμ12(n+1)Wκ12n,μ+12n(z),
13.15.22 dndzn(e12zzμ12Wκ,μ(z)) =(1)n(12μκ)ne12zzμ12(n+1)Wκ12n,μ12n(z),
13.15.23 (zddzz)n(e12zzκ1Wκ,μ(z)) =(12+μκ)n(12μκ)ne12zznκ1Wκn,μ(z),
13.15.24 dndzn(e12zzμ12Wκ,μ(z)) =(1)ne12zzμ12(n+1)Wκ+12n,μ+12n(z),
13.15.25 dndzn(e12zzμ12Wκ,μ(z)) =(1)ne12zzμ12(n+1)Wκ+12n,μ12n(z),
13.15.26 (zddzz)n(e12zzκ1Wκ,μ(z)) =(1)ne12zzκ+n1Wκ+n,μ(z).

Other versions of several of the identities in this subsection can be constructed by use of (13.3.29).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././bib/.././13.15#ii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy