Content-Length: 70855 | pFad | https://dlmf.nist.gov/./../././bib/.././bib/.././bib/../././33.8

DLMF: Β§33.8 Continued Fractions β€£ Variables 𝜌,πœ‚ β€£ Chapter 33 Coulomb Functions
About the Project
33 Coulomb FunctionsVariables ρ,η

Β§33.8 Continued Fractions

With arguments η,ρ suppressed,

33.8.1 Fβ„“β€²Fβ„“=Sβ„“+1βˆ’Rβ„“+12Tβ„“+1βˆ’Rβ„“+22Tβ„“+2βˆ’β‹―.

For R, S, and T see (33.4.1).

33.8.2 Hβ„“Β±β€²Hβ„“Β±=cΒ±iρ⁒a⁒b2⁒(Οβˆ’Ξ·Β±i)+(a+1)⁒(b+1)2⁒(Οβˆ’Ξ·Β±2⁒i)+β‹―,

where

33.8.3 a =1+β„“Β±i⁒η,
b =βˆ’β„“Β±i⁒η,
c =Β±i⁒(1βˆ’(Ξ·/ρ)).

The continued fraction (33.8.1) converges for all finite values of ρ, and (33.8.2) converges for all ρ≠0.

If we denote u=Fβ„“β€²/Fβ„“ and p+i⁒q=Hβ„“+β€²/Hβ„“+, then

33.8.4 Fβ„“ =Β±(qβˆ’1⁒(uβˆ’p)2+q)βˆ’1/2,
Fβ„“β€² =u⁒Fβ„“,
33.8.5 Gβ„“ =qβˆ’1⁒(uβˆ’p)⁒Fβ„“,
Gβ„“β€² =qβˆ’1⁒(u⁒pβˆ’p2βˆ’q2)⁒Fβ„“.

The ambiguous sign in (33.8.4) has to agree with that of the final denominator in (33.8.1) when the continued fraction has converged to the required precision. For proofs and further information see Barnett et al. (1974) and Barnett (1996).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././bib/.././bib/../././33.8

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy