Content-Length: 106322 | pFad | https://dlmf.nist.gov/./.././33.9#ii.info

DLMF: Β§33.9 Expansions in Series of Bessel Functions β€£ Variables 𝜌,πœ‚ β€£ Chapter 33 Coulomb Functions
About the Project
33 Coulomb FunctionsVariables ρ,η

Β§33.9 Expansions in Series of Bessel Functions

Contents
  1. Β§33.9(i) Spherical Bessel Functions
  2. Β§33.9(ii) Bessel Functions and Modified Bessel Functions

Β§33.9(i) Spherical Bessel Functions

33.9.1 Fℓ⁑(Ξ·,ρ)=Οβ’βˆ‘k=0∞ak⁒𝗃ℓ+k⁑(ρ),

where the function 𝗃 is as in Β§10.47(ii), aβˆ’1=0, a0=(2⁒ℓ+1)!!⁒Cℓ⁑(Ξ·), and

33.9.2 k⁒(k+2⁒ℓ+1)2⁒k+2⁒ℓ+1⁒akβˆ’2⁒η⁒akβˆ’1+(kβˆ’2)⁒(k+2β’β„“βˆ’1)2⁒k+2β’β„“βˆ’3⁒akβˆ’2=0,
k=1,2,….

The series (33.9.1) converges for all finite values of η and ρ.

Β§33.9(ii) Bessel Functions and Modified Bessel Functions

In this subsection the functions J, I, and K are as in §§10.2(ii) and 10.25(ii).

With t=2⁒|η|⁒ρ,

33.9.3 Fℓ⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)⁒(2⁒ℓ+1)!(2⁒η)2⁒ℓ+1β’Οβˆ’β„“β’βˆ‘k=2⁒ℓ+1∞bk⁒tk/2⁒Ik⁑(2⁒t),
Ξ·>0,
33.9.4 Fℓ⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)⁒(2⁒ℓ+1)!(2⁒|Ξ·|)2⁒ℓ+1β’Οβˆ’β„“β’βˆ‘k=2⁒ℓ+1∞bk⁒tk/2⁒Jk⁑(2⁒t),
Ξ·<0.

Here b2⁒ℓ=b2⁒ℓ+2=0, b2⁒ℓ+1=1, and

33.9.5 4⁒η2⁒(kβˆ’2⁒ℓ)⁒bk+1+k⁒bkβˆ’1+bkβˆ’2=0,
k=2⁒ℓ+2,2⁒ℓ+3,….

The series (33.9.3) and (33.9.4) converge for all finite positive values of |η| and ρ.

Next, as Ξ·β†’+∞ with ρ (>0) fixed,

33.9.6 Gℓ⁑(Ξ·,ρ)βˆΌΟβˆ’β„“(β„“+12)⁒λℓ⁑(Ξ·)⁒Cℓ⁑(Ξ·)β’βˆ‘k=2⁒ℓ+1∞(βˆ’1)k⁒bk⁒tk/2⁒Kk⁑(2⁒t),

where

33.9.7 λℓ⁑(Ξ·)βˆΌβˆ‘k=2⁒ℓ+1∞(βˆ’1)k⁒(kβˆ’1)!⁒bk.

For other asymptotic expansions of Gℓ⁑(Ξ·,ρ) see FrΓΆberg (1955, Β§8) and Humblet (1985).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././33.9#ii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy