Content-Length: 79793 | pFad | https://dlmf.nist.gov/./.././bib/../././././../././bib/.././7.17#iii.info

DLMF: §7.17 Inverse Error Functions ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
About the Project
7 Error Functions, Dawson’s and Fresnel IntegralsProperties

§7.17 Inverse Error Functions

Contents
  1. §7.17(i) Notation
  2. §7.17(ii) Power Series
  3. §7.17(iii) Asymptotic Expansion of inverfcx for Small x

§7.17(i) Notation

The inverses of the functions x=erfy, x=erfcy, y, are denoted by

7.17.1 y =inverfx,
y =inverfcx,

respectively.

§7.17(ii) Power Series

With t=12πx,

7.17.2 inverfx=t+13t3+730t5+127630t7+=m=0amt2m+1,
|x|<1,

where a0=1 and the other coefficients follow from the recursion

7.17.2_5 am+1=12m+3n=0m2n+1mn+1anamn,
m=0,1,2,.

For these results and 25S values of the first 200 coefficients see Strecok (1968).

§7.17(iii) Asymptotic Expansion of inverfcx for Small x

As x0

7.17.3 inverfcxu1/2+a2u3/2+a3u5/2+a4u7/2+,

where

7.17.4 a2 =18v,
a3 =132(v2+6v6),
a4 =1384(4v3+27v2+108v300),
7.17.5 u=2/ln(πx2ln(1/x)),

and

7.17.6 v=ln(ln(1/x))2+lnπ.

For an alternative representation of (7.17.3) see Blair et al. (1976).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/../././././../././bib/.././7.17#iii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy