Content-Length: 91627 | pFad | https://dlmf.nist.gov/./.././bib/.././././../././././../././.././5.13#Px3.p2

DLMF: §5.13 Integrals ‣ Properties ‣ Chapter 5 Gamma Function
About the Project
5 Gamma FunctionProperties

§5.13 Integrals

In (5.13.1) the integration path is a straight line parallel to the imaginary axis.

5.13.1 12πicic+iΓ(s+a)Γ(bs)zsds=Γ(a+b)za(1+z)a+b,
(a+b)>0, a<c<b, |phz|<π.
5.13.2 12π|Γ(a+it)|2e(2bπ)tdt=Γ(2a)(2sinb)2a,
a>0, 0<b<π.

Barnes’ Beta Integral

5.13.3 12πΓ(a+it)Γ(b+it)Γ(cit)Γ(dit)dt=Γ(a+c)Γ(a+d)Γ(b+c)Γ(b+d)Γ(a+b+c+d),
a,b,c,d>0.

Ramanujan’s Beta Integral

5.13.4 dtΓ(a+t)Γ(b+t)Γ(ct)Γ(dt)=Γ(a+b+c+d3)Γ(a+c1)Γ(a+d1)Γ(b+c1)Γ(b+d1),
(a+b+c+d)>3.

de Branges–Wilson Beta Integral

5.13.5 14πk=14Γ(ak+it)Γ(akit)Γ(2it)Γ(2it)dt=1j<k4Γ(aj+ak)Γ(a1+a2+a3+a4),
(ak)>0, k=1,2,3,4.

For compendia of integrals of gamma functions see Apelblat (1983, pp. 124–127 and 129–130), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2015, §6.4), Oberhettinger (1974, pp. 191–204), Oberhettinger and Badii (1973, pp. 307–316), Prudnikov et al. (1986b, pp. 57–64), Prudnikov et al. (1992a, pp. 127–130), and Prudnikov et al. (1992b, pp. 113–123).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/.././././../././././../././.././5.13#Px3.p2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy