Content-Length: 48186 | pFad | https://dlmf.nist.gov/./.././bib/.././././.././././.././23.19#info

DLMF: §23.19 Interrelations ‣ Modular Functions ‣ Chapter 23 Weierstrass Elliptic and Modular Functions
About the Project
23 Weierstrass Elliptic and Modular FunctionsModular Functions

§23.19 Interrelations

23.19.1 λ(τ)=16(η2(2τ)η(12τ)η3(τ))8,
23.19.2 J(τ)=427(1λ(τ)+λ2(τ))3(λ(τ)(1λ(τ)))2,
23.19.3 J(τ)=g23g2327g32,

where g2,g3 are the invariants of the lattice 𝕃 with generators 1 and τ; see §23.3(i).

Also, with Δ defined as in (23.3.4),

23.19.4 Δ=(2π)12η24(τ).








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/.././././.././././.././23.19#info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy